Advertisement

Functionalization of silicon nanowires by iron oxide and copper for degradation of phenol

  • Mansoor AnbiaEmail author
  • Fereshteh Aghadoukht
Article
  • 15 Downloads

Abstract

Iron oxide (Fe3O4) and copper-functionalized silicon nanowires (SiNWs) from silicon powder mesh < 500 with a spherical structure have been successfully synthesized as a heterogeneous catalyst for the degradation of phenol. This synthesized catalyst was prepared by nanosilicon wire powders. SiNWs have attracted much attention due their potential application in nanoscale devices such as field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. The SiNW properties were reinforced by functionalization. The synthesis of this catalyst was done by an in situ method for the decoration of SiNWs. Magnetic metal oxide compounds have been chosen not only to accelerate the catalyst recovery but also to improve the time duration of pollution elimination. Also, Cu nanoparticles were added in order to evaluate the catalytic property. In this work, the maximum amount of phenol degradation was obtained near 99.99%. Hybrid surface morphologies were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, the Brunauer–Emmette–Teller model and high-performance liquid chromatography.

Keywords

Phenol degradation Fe3O4–Cu-SiNWs catalyst Mesoporous Sphere 

Notes

Acknowledgements

This work was supported by the research laboratory of nanoporous materials, Iran University of science and technology.

References

  1. 1.
    J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6(5), 973 (2006)CrossRefGoogle Scholar
  2. 2.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449(7164), 885 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293(5533), 1289 (2001)CrossRefGoogle Scholar
  4. 4.
    K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1(11), 1062 (2005)CrossRefGoogle Scholar
  5. 5.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3(1), 31 (2008)CrossRefGoogle Scholar
  6. 6.
    C.J. Barrelet, A.B. Greytak, C.M. Lieber, Nano Lett. 4(10), 1981 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, Science 339(6123), 1057 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Zhou, J. Hu, C. Li, D. Ma, C. Lee, S. Lee, Chem. Phys. Lett. 369(1), 220 (2003)CrossRefGoogle Scholar
  9. 9.
    W. Yang, S. Lee, G. Liang, S. Whang, D. Kwong, Nanotechnology 19(22), 225203 (2008)CrossRefGoogle Scholar
  10. 10.
    E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103(8), 083114 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Servati, A. Colli, S. Hofmann, Y.Q. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, W. Milne, Physica E 38(1), 64 (2007)CrossRefGoogle Scholar
  12. 12.
    R.H. Dyck, G.P. Weckler, IEEE Trans. Electron Devices 15(4), 196 (1968)CrossRefGoogle Scholar
  13. 13.
    S. Belhousse, F.-Z. Tighilt, S. Sam, K. Lasmi, K. Hamdani, L. Tahanout, F. Megherbi, N. Gabouze, Appl. Surf. Sci. 421, 134 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Wu, P. Yang, J. Am. Chem. Soc. 123(13), 3165 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Kuo, C. Gau, Thin Solid Films 519(11), 3603 (2011)CrossRefGoogle Scholar
  16. 16.
    V. Mathet, P. Galtier, F. Nguyen-Van-Dau, G. Padeletti, J. Olivier, J. Cryst. Growth 132(1–2), 241 (1993)CrossRefGoogle Scholar
  17. 17.
    B. Fuhrmann, H.S. Leipner, H.-R. Höche, L. Schubert, P. Werner, U. Gösele, Nano Lett. 5(12), 2524 (2005)CrossRefGoogle Scholar
  18. 18.
    Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19(5), 744 (2007)CrossRefGoogle Scholar
  19. 19.
    W. McSweeney, H. Geaney, C. O’Dwyer, Nano Res. 8(5), 1395 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Loni, D. Barwick, L. Batchelor, J. Tunbridge, Y. Han, Z. Li, L. Canham, Electrochem. Solid-State Lett. 14(5), K25 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Qu, M. Fan, Crit. Rev. Environ. Sci. Technol. 40(6), 519 (2010)CrossRefGoogle Scholar
  22. 22.
    X. Zheng, B.-T. Zhang, Y. Teng, Sci. Total Environ. 476, 107 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Casillas, F. Tzompantzi, S. Castellanos, G. Mendoza-Damián, R. Pérez-Hernández, A. López-Gaona, A. Barrera, Appl. Catal. B 208, 161 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Anbia, M. Rezaie, Water Air Soil Pollut. 227(9), 349 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Czaplicka, Sci. Total Environ. 322(1), 21 (2004)CrossRefGoogle Scholar
  26. 26.
    S. Hamza, A. Kiani, Sens. Bio-Sens. Res. 16, 6 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Gürses, Ç. Doğar, M. Yalçın, M. Açıkyıldız, R. Bayrak, S. Karaca, J. Hazard. Mater. 131(1), 217 (2006)CrossRefGoogle Scholar
  28. 28.
    E. Oguz, B. Keskinler, J. Hazard. Mater. 151(2), 753 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Anbia, M. Rezaie, Res. Chem. Intermed. 43(1), 245 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Ren, X. Qian, M. Fang, D. Yue and Y. Zhao, Res. Chem. Intermed. 44(7), 4103 (2018)CrossRefGoogle Scholar
  31. 31.
    J.C. Lopez-Montilla, S. Pandey, D.O. Shah, O.D. Crisalle, Water Res. 39(9), 1907 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Rietveld, J. Appl. Crystallogr. 2(2), 65 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Laboratory of Nanoporous Materials, Faculty of ChemistryIran University of Science and TechnologyTehranIran

Personalised recommendations