Advertisement

Utilization of eggshell waste as green catalyst for application in the synthesis of 1,2,4,5-tetra-substituted imidazole derivatives

  • Maryam Mahmoudiani Gilan
  • Ardeshir KhazaeiEmail author
  • Negin Sarmasti
Article
  • 7 Downloads

Abstract

Eggshell as a solid waste was loaded on a nano-Fe3O4 surface. Then, in one step, it (Fe3O4@eggshell) was converted to Fe3O4@Ca3(PO4)2 as a nano-magnetic, green, cheap, and environmentally friendly catalyst. Techniques such as FT-IR, VSM, FESEM, TEM, EDX, XRD, and TGA were used to characterize the as-synthesized catalyst. The catalytic activity of Fe3O4@Ca3(PO4)2 was evaluated in the synthesis of 1,2,4,5-tetra-substituted imidazole derivatives through a one-pot multicomponent reaction. The design of the experiment as a systematic statistical approach was used to obtain the optimum point of the reaction condition so that 0.05 g of the as-synthesized catalyst and 94.77 °C were the best condition (which provides 90% yield for the benchmark reaction). Then, 1,2,4,5-tetra-substituted imidazole derivatives in the optimum condition were synthesized with very low reaction times in good yields. The as-prepared catalyst was retrieved through a magnet and used several times without significant loss of catalytic activity.

Graphical abstract

Keywords

One-pot reaction Eggshell Nano-magnetic 

Notes

Acknowledgement

The authors gratefully acknowledge partial support of this work by the Research Affairs Office of Bu-Ali Sina University (Grant Number 32-1716 entitled development of chemical methods, reagents and molecules), Center of Excellence in Development of Chemical Method (CEDCM), Hamedan, I. R. Iran.

Supplementary material

11164_2018_3724_MOESM1_ESM.doc (195 kb)
Supplementary material 1 (DOC 194 kb)

References

  1. 1.
    T. Zarganes-Tzitzikas, A.L. Chandgude, A. Dömling, Chem. Rec. 15, 5 (2015)CrossRefGoogle Scholar
  2. 2.
    L.F. Tietze, Chem. Rev. 96, 1 (1996)CrossRefGoogle Scholar
  3. 3.
    S. Brauch, S.S. van Berkel, B. Westermann, Chem. Soc. Rev. 42, 12 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Mannich, W. Krösche, Arch. Pharm. 250, 1 (1912)CrossRefGoogle Scholar
  5. 5.
    A. Strecker, J. Liebigs, Ann. Chem. 75, 1 (1850)CrossRefGoogle Scholar
  6. 6.
    J.T. Kuethe, D.R. Gauthier, G.L. Beutner, N. Yasuda, J. Org. Chem. 72, 19 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Passerini, L. Simone, Gazz. Chim. Ital. 51, 126 (1921)Google Scholar
  8. 8.
    I. Ugi, Angew. Chem. Int. Ed. 1, 1 (1962)CrossRefGoogle Scholar
  9. 9.
    P.L. Pauson, I.U. Khand, Ann. N.Y. Acad. Sci. 295, 1 (1977)CrossRefGoogle Scholar
  10. 10.
    A.M. Van Leusen, J. Wildeman, O.H. Oldenziel, J. Org. Chem. 42, 7 (1977)CrossRefGoogle Scholar
  11. 11.
    K. Gewald, E. Schinke, H. Böttcher, Chem. Ber. 99, 1 (1966)CrossRefGoogle Scholar
  12. 12.
    A. Hantzsch, Ber. Deutsch. Chem. Gesellsch. 14, 2 (1881)Google Scholar
  13. 13.
    H. Staudinger, J. Liebigs, Ann. Chem. 356, 1 (1907)CrossRefGoogle Scholar
  14. 14.
    Y.-B. Nie, L. Wang, M.-W. Ding, J. Org. Chem. 77, 1 (2012)CrossRefGoogle Scholar
  15. 15.
    H.B. Lee, S. Balasubramanian, Org. Lett. 2, 3 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Balalaie, M.M. Hashemi, M. Akhbari, Tetrahedron Lett. 44, 8 (2003)CrossRefGoogle Scholar
  17. 17.
    W. Li, Y. Lam, J. Comb. Chem. 7, 5 (2005)Google Scholar
  18. 18.
    G.V.M. Sharma, Y. Jyothi, P.S. Lakshmi, Synth. Commun. 36, 20 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Kidwai, P. Mothsra, Tetrahedron Lett. 47, 29 (2006)Google Scholar
  20. 20.
    L. Nagarapu, S. Apuri, S. Kantevari, J. Mol. Catal. A 266, 1 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Kantevari, S.V.N. Vuppalapati, D.O. Birada, L. Nagarapu, J. Mol. Catal. A 266, 1 (2007)CrossRefGoogle Scholar
  22. 22.
    M.M. Heravi, F. Derikvand, F.F. Bamoharram, J. Mol. Catal. A 263, 1 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Das Sharma, P. Hazarika, D. Konwar, Tetrahedron Lett. 49, 14 (2008)CrossRefGoogle Scholar
  24. 24.
    B. Sadeghi, B.B.F. Mirjalili, M.M. Hashemi, Tetrahedron Lett. 49, 16 (2008)CrossRefGoogle Scholar
  25. 25.
    A. Davoodnia, M.M. Heravi, Z. Safavi-Rad, N. Tavakoli-Hoseini, Synth. Commun. 40, 17 (2010)CrossRefGoogle Scholar
  26. 26.
    A.R. Karimi, Z. Alimohammadi, M.M. Amini, Mol. Divers. 14, 4 (2010)CrossRefGoogle Scholar
  27. 27.
    M.R. Mohammadizadeh, A. Hasaninejad, M. Bahramzadeh, Synth. Commun. 39, 18 (2009)Google Scholar
  28. 28.
    A. Teimouri, A.N. Chermahini, J. Mol. Catal. A 346, 1 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Niknam, A. Deris, F. Naeimi, F. Majleci, Tetrahedron Lett. 52, 36 (2011)CrossRefGoogle Scholar
  30. 30.
    M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, RSC Adv. 5, 42 (2015)Google Scholar
  31. 31.
    G. Mohammadi Ziarani, Z. Dashtianeh, M. Shakiba Nahad, A. Badiei, Arab. J. Chem. 8, 5 (2015)Google Scholar
  32. 32.
    A. Khazaei, A.R. Moosavi-Zare, F. Gholami, V. Khakyzadeh, Appl. Organomet. Chem. 30, 8 (2016)Google Scholar
  33. 33.
    Y.C. Sharma, B. Singh, J. Korstad, Energy Fuels 24, 5 (2010)Google Scholar
  34. 34.
    A. Laca, A. Laca, M. Díaz, J. Environ. Manag. 197, 351 (2017)CrossRefGoogle Scholar
  35. 35.
    E. Mosaddegh, F.A. Hosseininasab, A. Hassankhani, RSC Adv. 5, 129 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Mallampati, S. Valiyaveettil, ACS Sustain. Chem. Eng. 2, 4 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Khazaei, A. Khazaei, M. Nasrollahzadeh, M.R. Tahsili, Tetrahedron 73, 38 (2017)Google Scholar
  38. 38.
    M. Kuhn, M. Lucas, P. Claus, Ind. Eng. Chem. Res. 54, 26 (2015)CrossRefGoogle Scholar
  39. 39.
    E. Mosaddegh, A. Hassankhani, H. Karimi-Maleh, Mater. Sci. Eng. C. 46, 264 (2015)CrossRefGoogle Scholar
  40. 40.
    A. Khazaei, N. Sarmasti, J.Y. Seyf, Appl. Organomet. Chem. 32, 4 (2018)Google Scholar
  41. 41.
    E. Nordic-Baltic, Conference on biomedical, P. medical, ed. by A. Katashev, Y. Dekhtyar, J. Spigulis, in M. Intern. Fed. for, E. Biological (Springer, Berlin)Google Scholar
  42. 42.
    Z.B. Alfassi, R.E. Huie, P. Neta, J. Phys. Chem. 97, 28 (1993)Google Scholar
  43. 43.
    I.N. Levine, Physical Chemistry (McGraw-Hill, New York, 2011)Google Scholar
  44. 44.
    A. Khazaei, N. Sarmasti, J.Y. Seyf, M. Tavasoli, RSC Adv. 5, 123 (2015)CrossRefGoogle Scholar
  45. 45.
    M.A. Zolfigol, A. Khazaei, N. Sarmasti, J.Y. Seyf, V. Khakyzadeh, A.R. Moosavi-Zare, Appl. Catal, A. 393, 142 (2014)CrossRefGoogle Scholar
  46. 46.
    D.D. Frey, F. Engelhardt, E.M. Greitzer, Res. Eng. Des. 14, 2 (2003)CrossRefGoogle Scholar
  47. 47.
    D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 1976)Google Scholar
  48. 48.
    M.A. Kulkarni, U.P. Lad, U.V. Desai, S.D. Mitragotri, P.P. Wadgaonkar, C. R. Chimie. 16, 2 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Curini, F. Epifano, S. Chimichi, F. Montanari, M. Nocchetti, O. Rosati, Tetrahedron Lett. 46, 20 (2005)CrossRefGoogle Scholar
  50. 50.
    A. Sinhamahapatra, N. Sutradhar, B. Roy, A. Tarafdar, H.C. Bajaj, A.B. Panda, Appl. Catal. A. 385, 1 (2010)CrossRefGoogle Scholar
  51. 51.
    X. Liu, Z. Ma, J. Xing, H. Liu, J. Magn. Magn. Mater. 270, 1 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Maryam Mahmoudiani Gilan
    • 1
  • Ardeshir Khazaei
    • 1
    Email author
  • Negin Sarmasti
    • 1
  1. 1.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations