Sonocatalytic decolorization of methylene blue from aqueous media by La:ZnO/GO nanocomposites

  • Ādeleh Afroozān Bāzghale
  • Ali Mohammad-khāhEmail author


The collaboration of graphene oxide and a rare earth element dopant has a significant effect on the catalytic performance of zinc oxide nanoparticles (ZnO). For this purpose, lanthanum-doped zinc oxide/graphene oxide (La:ZnO/GO) nanocomposites were produced. The La:ZnO/GO composites developed using various quantities of La3+ (3, 6 and 9 at.%) were used for methylene blue (MB) decomposition in the presence of ultrasound. SEM images of nanocomposites showed that the growth pattern of ZnO nanoparticles on the surface of graphene oxide changed, which can be related to lanthanum addition on the structure. In fact, by adding lanthanum, the structure of ZnO nanosheets that were aggregated in the flower form was converted into flower-like nanorods. TEM images clearly displayed La:ZnO/GO nanorods. The presence of lanthanum was confirmed by EDS analysis. La:ZnO(3 at.%)/GO nanocomposite, exhibited the highest sonocatalytic activity (93% after 80 min) and demonstrated good stability in optimized conditions (catalyst dosage 0.1 g, initial dye concentration 10 mg/L and irradiation time 80 min), which was checked out using response surface methodology from Design of Experiment software. After using a radical hydroxyl, superoxide and hole quencher results confirmed that the generated holes in the valence band of ZnO and superoxide radicals are major species for the MB oxidation process. The results demonstrated that the mineralization percentage of MB was approximately 93% of total organic carbon removal under ultrasound.


Ultrasonic irradiation Decolorization Sonocatalyst Response surface methodology Rare earth element 



The financial support of this work by the University of Guilan is gratefully acknowledged.


  1. 1.
    Y.N. Tan, C.L. Wong, A.R. Mohamed, ISRN Mater. Sci. 2011, 1 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Wang, Z. Jiang, Z. Zhang, Y. Xie, X. Wang, Z. Xing, R. Xu, X. Zhang, Ultrason. Sonochem. 15, 768 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Jourshabani, Z. Shariatinia, A. Badiei, J. Colloid Interface Sci. 507, 59 (2017)CrossRefGoogle Scholar
  4. 4.
    A.K. Shriwas, P.R. Gogate, Ind. Eng. Chem. Res. 50, 9601 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Ashokkumar, Ultrason. Sonochem. 18, 864 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Ashokkumar, T.J. Mason, Sonochemistry, Kirk-Othmer Encycl. Chem. Technol. 353 (2000)Google Scholar
  7. 7.
    K.S. Suslick, D.J. Flannigan, Annu. Rev. Phys. Chem. 59, 659 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Nuengmatcha, S. Chanthai, R. Mahachai, W.C. Oh, Dye. Pigment. 134, 487 (2016)CrossRefGoogle Scholar
  9. 9.
    K.M. Wong, Y. Fang, A. Devaux, L. Wen, J. Huang, L. De Cola, Y. Lei, Nanoscale 3, 4830 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Panwar, K.L. Yadav, Mater. Lett. 142, 30 (2015)CrossRefGoogle Scholar
  11. 11.
    S.O.B. Oppong, W.W. Anku, S.K. Shukla, E.S. Agorku, P.P. Govender, J. Sol-Gel. Sci. Technol. 80, 38 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Raghavan, S. Thangavel, G. Venugopal, Mater. Sci. Semicond. Process. 30, 321 (2015)CrossRefGoogle Scholar
  13. 13.
    O. Yayapao, S. Thongtem, A. Phuruangrat, T. Thongtem, Ceram. Int. 39, 1 (2013)CrossRefGoogle Scholar
  14. 14.
    O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett. 90, 83 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Pratapeddy, A. Venugopal, M. Subrahmanyam, Water Res. 41, 379 (2007)CrossRefGoogle Scholar
  16. 16.
    G. Lu, L.E. Ocola, J. Chen, Nanotechnology 20, 445502 (2009)CrossRefGoogle Scholar
  17. 17.
    H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, Y.H. Lee, J. Phys. D Appl. Phys. 42, 065418 (2009)CrossRefGoogle Scholar
  18. 18.
    D.W. Boukhvalov, M.I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008)CrossRefGoogle Scholar
  19. 19.
    R.S. Ruoff, Nano Lett. 8, 4283 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394 (2007)CrossRefGoogle Scholar
  21. 21.
    C. Gomez-Navarro, Nano Lett. 7, 3499 (2007)CrossRefGoogle Scholar
  22. 22.
    H.A. Becerril, ACS Nano 2, 463 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Kang, A. Kulkarni, S. Stankovich, R.S. Ruoff, S. Baik, Carbon N. Y. 47, 1520 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 103, 113712 (2008)CrossRefGoogle Scholar
  25. 25.
    G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)CrossRefGoogle Scholar
  26. 26.
    T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, H. Teng, Adv. Funct. Mater. 20, 2255 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Nawaz, W. Miran, J. Jang, D.S. Lee, Appl. Catal. B Environ. 203, 85 (2017)CrossRefGoogle Scholar
  28. 28.
    Y.N. Lv, J.F. Wang, Y. Long, C.A. Tao, L. Xia, H. Zhu, Adv. Mater. Res. 554–556, 597 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Khataee, R.D.C. Soltani, A. Karimi, S.W. Joo, Ultrason. Sonochem. 23, 219 (2015)CrossRefGoogle Scholar
  30. 30.
    R.F. Gunst, Technometrics 38, 284 (1996)CrossRefGoogle Scholar
  31. 31.
    P.-G. Ren, D.-X. Yan, X. Ji, T. Chen, Z.-M. Li, Nanotechnology. 22, 055705 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509, 4098 (2011)CrossRefGoogle Scholar
  33. 33.
    S.O.B. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Res. Chem. Intermed. 43, 481 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Vijay Kumar, N.M. Huang, N. Yusoff, H.N. Lim, Mater. Lett. 93, 411 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Min, K. Zhang, L. Chen, Y. Chen, Y. Zhang, Diam. Relat. Mater. 26, 32 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Yang, T. Liu, Appl. Surf. Sci. 257, 8950 (2011)CrossRefGoogle Scholar
  37. 37.
    N.A. Aal, F. Al-Hazmi, A.A. Al-Ghamdi, A.A. Hendi, R.H. Alorainy, A.M. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, J. Nanoelectron. Optoelectron. 9, 624 (2014)CrossRefGoogle Scholar
  38. 38.
    Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K. Ostrikov, Appl. Sci. 8, 353 (2018)CrossRefGoogle Scholar
  39. 39.
    A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, J. Nanoparticle Res. 8, 43 (2006)CrossRefGoogle Scholar
  40. 40.
    J. Li, Q. Liu, Q. Qing Ji, B. Lai, Appl. Catal. B Environ. 200, 633 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Khataee, S. Saadi, B. Vahid, S.W. Joo, B.K. Min, Ultrason. Sonochem. 29, 27 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. Areerob, C.J. Yong, J.W. Kweon, W.-C. Oh, Ultrason. Sonochem. 41, 267 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Huang, Y.H. Li, S. Lin, C. Liang, H. Wang, C.X. Ye, Y.J. Wang, R. Zhang, D.Y. Fan, H.J. Yang, Y.G. Wang, M. Lei, Powder Technol. 257, 113 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Yong, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
  45. 45.
    T. Bora, J. Dutta, J. Nanosci. Nanotechnol. 14, 613 (2014)CrossRefGoogle Scholar
  46. 46.
    D. Xu, B. Cheng, S. Cao, J. Yu, Appl. Catal. B Environ. 164, 380 (2015)CrossRefGoogle Scholar
  47. 47.
    T.F. Yeh, F.F. Chan, C. Te Hsieh, H. Teng, J. Phys. Chem. C 115, 22587 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Rostami, RSC Adv. 7, 43424 (2017)CrossRefGoogle Scholar
  49. 49.
    D. Wang, H. Shen, L. Guo, C. Wang, F. Fu, Y. Liang, RSC Adv. 6, 71052 (2016)CrossRefGoogle Scholar
  50. 50.
    Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Appl. Catal. B Environ. 182, 115 (2016)CrossRefGoogle Scholar
  51. 51.
    P.M.K. Reddy, S.K. Mahammadunnisa, C.H. Subrahmanyam, Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 53, 499 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of GuilanRashtIran
  2. 2.Department of Water Engineering and EnvironmentUniversity of GuilanRashtIran

Personalised recommendations