Advertisement

New catalytic approach for nano-sized V(IV), Cr(III), Mn(II) and Fe(III)-triazole complexes: detailed spectral, electrochemical and analytical studies

  • Layla Almazroia
  • Reem K. Shah
  • Nashwa M. El-MetwalyEmail author
  • Thoraya A. Farghaly
Article
  • 27 Downloads

Abstract

A new series of metal ion complexes from a triazole-Schiff base was synthesized and fully characterized. The tridentate mode of coordination was the only mode of bonding in a 1:1 (M:L) molar ratio. Octahedral geometry was the only structural form proposed for all chelating compounds. This geometry was established based on UV–Vis, magnetic moments and ESR studies. The nanometer feature for all complexes was extracted from SEM images and XRD data. CV electrochemical study over Fe(III) and Mn(II) complexes (examples) displayed a ip,c/ip,a ratio over 1, which points to irreversible electrode couples. TGA and kinetic parameters reflect a best view about the thermal stability of all tested compounds. Molecular modeling was achieved through an advanced program, to optimize the structural forms and estimate significant parameters. All features concluded from all implemented studies orient us towards the best compounds serving in the intended catalytic application. Proceeding from this, Fe(III) and Mn(II) complexes were chosen for their heterogeneous catalytic application, as they can be used without treatment. Moreover, amounts from such complexes were ignited in open air (calcinations) to produce their corresponding oxides, Fe2O3 and MnO2. The synthesized oxides were fully analyzed to establish their chemical formula, as well as extract their morphological characters, which are the main players in the catalytic field. The surface characteristic and particulate sizes show promise in a catalytic role compared to other similar purchased oxides. The original complexes and their synthesized oxides were utilized separately to synthesize biodiesel from waste oils through heterogenous catalytic process. This process was conducted through a comparative study with other referenced methods. The catalytic role of prepared oxides was clearly observed whenever their original complexes did not display catalytic features as desired. Moreover, this comparative study was prolonged versus purchased oxides (Fe2O3 and MnO2) and the differentiation based on reaction yields after verification of physical features. The priorities of synthesized oxides in the catalytic process were impressive and confirm access to the desired goal.

Keywords

Biodiesel synthesis Catalytic activity Nanometer complexes Electrochemical study 

Notes

Acknowledgements

This work was supported by grants from King Abdulaziz City for Science and Technology in Riyadh, Riyadh, Saudi Arabia under Project Grants No. 37-170.

Supplementary material

11164_2018_3714_MOESM1_ESM.docx (8.6 mb)
Supplementary material 1 (DOCX 8803 kb)

References

  1. 1.
    A. Ayati, S. Emami, A. Foroumadi, Eur. J. Med. Chem. 109, 380 (2016)CrossRefGoogle Scholar
  2. 2.
    R.K. Barid, M.E. Al-Dokheily, Glob. J. Pure Appl. Chem. Res. 2, 1 (2014)Google Scholar
  3. 3.
    F.J. Hassan, I.A. Flifel, H.A. Mahdi, J. Thi-Qar Sci. 4, 2103 (1991)Google Scholar
  4. 4.
    R.R. Radwan, N.H. Zaher, M.G. El-Gazzar, Chem. Biol. Interact. 274, 68 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Karrouchi, L. Chemlal, J. Taoufik, Y. Cherrah, S. Radi, M.E. Faouzi, M. Ansar, Ann. Pharm. Françaises 74, 431 (2016)CrossRefGoogle Scholar
  6. 6.
    İ. Kaya, A. Erçağ, A. Avcı, S. Çulhaoğlu, J. Inorg. Organomet. Polym. Mater. 24, 665 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Huang, P. Zhao, D. Astruc, Coord. Chem. Rev. 272, 145 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Rehan, J. Gardy, A. Demirbas, U. Rashid, W.M. Budzianowski, D. Pant, A.S. Nizami, Bioresour. Technol. 250, 17 (2018)CrossRefGoogle Scholar
  9. 9.
    A.B. Fadhil, E.T.B. Al-Tikrity, M.A. Albadree, Fuel 210, 721 (2017)CrossRefGoogle Scholar
  10. 10.
    W.Y. Lou, M.H. Zong, Z.Q. Duan, Bioresour. Technol. 99, 8752 (2008)CrossRefGoogle Scholar
  11. 11.
    V. Singh, M. Yadav, Y.C. Sharma, Fuel 203, 360 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Peng, Q. Shu, J. Wang, G. Wang, D. Wang, Process Saf. Environ. Prot. 86, 441 (2008)CrossRefGoogle Scholar
  13. 13.
    B.R. Vahid, N. Saghatoleslami, H. Nayebzadeh, J. Toghiani, J. Taiwan Inst. Chem. Eng. 83, 115 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Pirouzmand, M.M. Anakhatoon, Z. Ghasemi, Fuel 216, 296 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Kaur, R. Malhotra, A. Ali, Renew. Energy 116, 109 (2018)CrossRefGoogle Scholar
  16. 16.
    A.I. Vogel, Text Book Of quantitative Inorganic Analysis (Longman, London, 1986)Google Scholar
  17. 17.
    M. Chen, X. Wang, S. Wang, Y. Feng, F. Chen, C. Yang, J. Fluor. Chem. 135, 323 (2012)CrossRefGoogle Scholar
  18. 18.
    A.M. Demchenko, V.A. Yanchenko, A.V. Gutov, A.N. Chernega, Lozinskii M.O. Zh, Org. Farm. Khim. 5, 41 (2007)Google Scholar
  19. 19.
    T.A. Farghaly, M.A. Abdalla, H.K. Mahmoud, Turk. J. Chem. 39, 955–969 (2015)CrossRefGoogle Scholar
  20. 20.
    W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  21. 21.
    T. Ozawa, Bull. Chem. Sot. Jpn. 38, 1881 (1965)CrossRefGoogle Scholar
  22. 22.
    W.W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974)Google Scholar
  23. 23.
    J.H.F. Flynn, L.A. Wall, J. Res. Natl. Bur. Stand. A. 70, 487 (1996)Google Scholar
  24. 24.
    P. Kofstad, Nature 179, 1362 (1957)CrossRefGoogle Scholar
  25. 25.
    H.W. Horowitz, G.A. Metzger, Anal. Chem. 35, 1464 (1963)CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, et al. Gaussian 09, Inc. Wallingford. CT. (2010)Google Scholar
  27. 27.
    R. Dennington, T. Keith, J. Millam. Gauss View, Version 4.1.2, SemichemInc, Shawnee Mission, KS, (2007)Google Scholar
  28. 28.
    M.M. Al-Iede, J. Karpelowsky, D.A. Fitzgerald, Pediatr. Pulmonol. 51, 4 (2015)Google Scholar
  29. 29.
    W.J. Geary, Coord. Chem. Rev. 7, 81 (1971)CrossRefGoogle Scholar
  30. 30.
    A.Y. Al-Dawood, N.M. El-Metwaly, H.A. El-Ghamry, J. Mol. Liq. 220, 311 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Nakamoto, Infrared and Raman Spectra of In-organic and Coordination Compounds (Wiley, New York, 1986)Google Scholar
  32. 32.
    S. Bhattacharya, T. Ghosh, Ind. J. Chem. 38A, 601 (1999)Google Scholar
  33. 33.
    A.M.A. Alaghaz, R.A. Ammar, Eur. J. Med. Chem. 45, 1314 (2010)CrossRefGoogle Scholar
  34. 34.
    E.R. Price, J.R. Wasson, J. Inorg. Nucl. Chem. 36, 67 (1974)CrossRefGoogle Scholar
  35. 35.
    A.A. El-Asmy, T.H. Rakha, M.H. Abdel-Rhman, M.M. Hassanien, A.S. Al-Mola, Spectrochim. Acta A 136, 1718 (2015)CrossRefGoogle Scholar
  36. 36.
    M.S. Refata, N.M. El-Metwaly, Spectrochim. Acta Part A 92, 336 (2012)CrossRefGoogle Scholar
  37. 37.
    A.A. El-Asmy, N.M. El-Metwally, G.A. Al-Hazmi, Transit. Metal Chem. 31, 673 (2006)CrossRefGoogle Scholar
  38. 38.
    I. Althagafi, N.M. El-Metwaly, M.G. Elghalban, T.A. Farghaly, A.M. Khedr, Bioinorg. Chem. Appl. 2018, 1 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Montgomery, E.C. Lingafelter, Acta Cryst. 20, 723 (1966)CrossRefGoogle Scholar
  40. 40.
    C.J. Carrano, C.M. Nunn, R. Quan, J.A. Bonadies, V.L. Pecoraro, Inorg. Chem. 29, 938 (1990)CrossRefGoogle Scholar
  41. 41.
    B.J. Hathaway, DE Billing, Coord. Chem. Rev. 5, 143 (1970)CrossRefGoogle Scholar
  42. 42.
    B.J. Hathaway, A Structure. Bonding (Berlin) 57, 55 (1984)CrossRefGoogle Scholar
  43. 43.
    T.M. Dunn, Trans. Faraday Soc. 57, 1441 (1961)CrossRefGoogle Scholar
  44. 44.
    B.R. Mc Garvey, J. Phys. Chem. 71, 51 (1967)CrossRefGoogle Scholar
  45. 45.
    M. Salagram, N. Satyanarayana, S. Radhakrishna, Polyhedron 5, 1171 (1986)CrossRefGoogle Scholar
  46. 46.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970)Google Scholar
  47. 47.
    F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of Transition Metal Compounds (Elsevier, Amsterdam, 1992)Google Scholar
  48. 48.
    J. Owen, Proc. R. Soc. London A 227, 183 (1955)Google Scholar
  49. 49.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Inc, Boston, 1993)Google Scholar
  50. 50.
    S. Velumani, X. Mathew, P.J. Sebastian, S.A.K. Narayandass, D. Mangalaraj, Mater. Solar Cells 76, 347 (2003)CrossRefGoogle Scholar
  51. 51.
    J.S. Ritch, T. Chivers, K. Ahmad, M. Afzaal, P.O. Brien, Inorg. Chem. 49, 1198 (2010)CrossRefGoogle Scholar
  52. 52.
    T. Mokari, M. Zhang, P. Yang, J. Am. Chem. Soc. 129, 9864 (2007)CrossRefGoogle Scholar
  53. 53.
    J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, J. Am. Chem. Soc. 128, 3248 (2006)CrossRefGoogle Scholar
  54. 54.
    G.A.A. Al-Hazmi, N. El- Metwally, Arab. J. Chem. 10, S1003 (2017)CrossRefGoogle Scholar
  55. 55.
    M.S. El-Shahawi, W.E. Smith, Analyst 119, 327 (1994)CrossRefGoogle Scholar
  56. 56.
    N.C. Pramanik, S. Bhattacharya, Polyhedron 16, 1755 (1997)CrossRefGoogle Scholar
  57. 57.
    S.S. Kandil, G.B. El-Hefnawy, E.A. Baker, Thermochim. Acta 414, 105 (2004)CrossRefGoogle Scholar
  58. 58.
    R.K. Ray, G.R. Kauffman, Inorg. Chem. Acta. 173, 207 (1990)CrossRefGoogle Scholar
  59. 59.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, London, 1976)Google Scholar
  60. 60.
    S.K. Tripathi, R. Muttineni, S.K. Singh, J. Theor. Biol. 334, 87 (2013)CrossRefGoogle Scholar
  61. 61.
    C. Fosset, B.A. McGaw, M.D. Reid, J. Inorg. Biochem. 99, 1018 (2005)CrossRefGoogle Scholar
  62. 62.
    V. Singh, M. Yadav, Y.C. Sharma, Fuel 203, 360 (2017)CrossRefGoogle Scholar
  63. 63.
    I.B. Banković-Ilić, M.R. Miladinović, O.S. Stamenković, V.B. Veljković, Renew. Sustain. Energy Rev. 72, 746 (2017)CrossRefGoogle Scholar
  64. 64.
    N.A. Negma, G.H. Sayed, O.I. Habiba, F.Z. Yehia, E.A. Mohamed, J. Mol. Liq. 237, 38 (2017)CrossRefGoogle Scholar
  65. 65.
    L.M. Correia, N.S. Campelo, D.S. Novaes, C.L. Cavalcante Jr., J.A. Cecilia, E. Rodríguez-Castellón, R.S. Vieira, Chem. Eng. J. 269, 35 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Layla Almazroia
    • 1
  • Reem K. Shah
    • 1
  • Nashwa M. El-Metwaly
    • 1
    • 2
    Email author
  • Thoraya A. Farghaly
    • 1
    • 3
  1. 1.Department of Chemistry, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Chemistry Department, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations