Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 1, pp 639–655 | Cite as

Effects of Fenton’s reagent and thermal modification on the electrochemical properties of graphite felt for microbial fuel cell

  • Bolong JiangEmail author
  • Thorben Muddemann
  • Ulrich Kunz
  • Dennis Haupt
  • Hinnerk Bormann
  • Michael Niedermeiser
  • Ottmar Schläfer
  • Michael Sievers
Article
  • 187 Downloads

Abstract

Effective methods for graphite felt (GF) treatment based on Fenton’s reagent treatment and thermal modification have been used to improve microbial fuel cell (MFC) performance. The effects of the H2O2 content in Fenton’s reagent on the performances of MFCs with two different GFs (GFD and ACN-211) have been investigated. For GFD, a maximum performance of 190 mW/m2 was achieved with H2O2 volume of 100 ml, while for ACN-211, the maximum performance of 450 mW/m2 is reached with H2O2 volume of 150 ml. MFCs with both treated and untreated ACN-211 consistently showed higher power densities and greater durabilities than those with treated and untreated GFD. The degree of fouling on the surface of ACN-211 was much less than that on the surface of GFD. The higher surface area and better anti-fouling performance of ACN-211 are responsible for its relatively high power density during long-term operation. Thermal modification of ACN-211 was performed at different temperatures and for different durations, and the effects of treatment conditions on the performances of MFCs were studied. Results showed that an MFC fabricated with ACN-211 treated under 400 °C for 2 h exhibited the highest power density, with a maximum value of 470 mW/m2, which is higher than that of an MFC fabricated with ACN-211 treated by Fenton’s reagent. A Coulombic efficiency of 35% and an energy efficiency of 10% were achieved for an MFC fabricated with ACN-211.

Keywords

Microbial fuel cell Waste-water treatment Fenton’s reagent Thermal modification Graphite felts 

Notes

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), BMBF, Germany, for funding parts of this study under contract no. 02WER1317A. The corresponding author would also like to acknowledge Prof. Kunz for revising the manuscript and other colleagues who are working hard for the research.

References

  1. 1.
    Y.H. Li, L.F. Liu, F.L. Yang, J. Membr. Sci. 202, 525 (2017)Google Scholar
  2. 2.
    P. Prashant, N. Vikas, L. Shinde Rajendra, Appl. Energy 706, 168 (2016)Google Scholar
  3. 3.
    R. Li, Y. Dai, B. Chen, J. Zou, B. Jiang, H. Fu, J. Power Sources 1, 307 (2016)Google Scholar
  4. 4.
    W. He, M.J. Wallack, K.Y. Kim, Water Res. 351, 105 (2016)Google Scholar
  5. 5.
    N. Labarge, Y.D. Yilmazel, P. Hong, Bioelectrochemistry 20, 113 (2017)Google Scholar
  6. 6.
    W. He, X. Zhang, J. Liu, X. Zhu, Y. Feng, B.E. Logan, Environ. Sci. Technol. 186, 2 (2016)Google Scholar
  7. 7.
    F.J. Hernández-Fernández, A. Pérez, M.J. Salar-García, Fuel Process. Technol. 284, 138 (2015)Google Scholar
  8. 8.
    H. Liu, S.A. Cheng, B.E. Logan, Environ. Sci. Technol. 5488, 39 (2005)Google Scholar
  9. 9.
    Y. Zhang, Y. Wang, I. Angelidaki, J. Power Sources 108, 291 (2015)Google Scholar
  10. 10.
    R.A. Rozendal, H.V. Hamelers, K. Rabaey, J. Keller, C.J. Buisman, Trends Biotechnol. 450, 9 (2008)Google Scholar
  11. 11.
    Z. Wang, C. Cao, Y. Zheng, S. Chen, F. Zhao, Chem. Electro. Chem. 1813, 1 (2014)Google Scholar
  12. 12.
    B. Jiang, T. Muddemann, U. Kunz, J. Electrochem. Soc. H3083, 3 (2017)Google Scholar
  13. 13.
    I. Roche, K. Scott, J. Appl. Electrochem. 197, 39 (2009)Google Scholar
  14. 14.
    H. Yuan, Y. Hou, I.M. Abu-Reesh, J. Chen, Z. He, Mater. Horiz. 382, 3 (2016)Google Scholar
  15. 15.
    M. Skyllas-Kazacos, B. Sun, Electrochim. Acta 2459, 37 (1992)Google Scholar
  16. 16.
    Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Electrochem. Commun. 1379, 13 (2011)Google Scholar
  17. 17.
    W.C. Lau, P. Wang, H.H.P. Fang, J. Environ. Eng. 669, 7 (2001)Google Scholar
  18. 18.
    M. Skyllas-Kazacos, M. Kazacos, US Patent 6143443, (2000)Google Scholar
  19. 19.
    C. Gao, N. Wang, Electrochim. Acta 193, 88 (2013)Google Scholar
  20. 20.
    M. Skyllas-Kazacos, B. Sun, Electrochim. Acta 1253, 37 (1992)Google Scholar
  21. 21.
    K.J. Kim, Y.J. Kim, J.H. Kim, M.S. Park, Mater. Chem. Phys. 547, 131 (2011)Google Scholar
  22. 22.
    M. Skyllas-Kazacos, B. Sun, Electrochim. Acta 37, 2459–2465 (1992)CrossRefGoogle Scholar
  23. 23.
    L. Zhou, M. Zhou, Z. Hu, Electrochim. Acta 140, 376–383 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Bolong Jiang
    • 1
    Email author
  • Thorben Muddemann
    • 1
    • 2
  • Ulrich Kunz
    • 1
  • Dennis Haupt
    • 2
  • Hinnerk Bormann
    • 2
  • Michael Niedermeiser
    • 2
  • Ottmar Schläfer
    • 2
  • Michael Sievers
    • 2
  1. 1.Institute of Chemical and Electrochemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.CUTEC Institut GmbHClausthal-ZellerfeldGermany

Personalised recommendations