Research on Chemical Intermediates

, Volume 43, Issue 9, pp 5011–5024 | Cite as

Nanosized amorphous tantalum oxide: a highly efficient photocatalyst for hydrogen evolution

  • Nannan Zhang
  • Liping Li
  • Guangshe LiEmail author


A facile synthetic route for the preparation of highly active tantalum oxide photocatalysts was developed without using any surfactants. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, thermogravimetric analysis, and Raman, and their activity was evaluated by photocatalytic H2 evolution under UV–Vis light irradiation (320 < λ < 780 nm). To elucidate the photocatalytic activity, the nitrogen adsorption–desorption isotherms experiment, ultraviolet–visible diffuse reflectance spectra, photoluminescence and steady-state surface photo-voltage measurements were performed. The recyclable photocatalytic properties were also conducted to demonstrate its high stability. Notably, the obtained samples prepared by direct evaporation are amorphous and own a large specific surface area, and furthermore exhibit a far greater photocatalytic performance than commercial Ta2O5. On the basis of the above experiment results, the enhanced photocatalytic activity of a-Ta x O y could be ascribed to the efficient separation and migration of photo-generated carriers as well as the higher energy of the conduction band minimum. Therefore, the direct evaporation synthesis opens a door to the facile preparation of highly active amorphous photocatalysts.

Graphical Abstract


Amorphous Photocatalysis TaxOy H2 evolution Direct evaporation method 



This work was financially supported by NSFC (Grants 21025104, 21271171 and 91022018).


  1. 1.
    Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, H. Zhang, Adv. Mater. 28, 1917 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Tüysüz, C.K. Chan, Nano Energy 2, 116 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Grewe, M. Meggouh, H. Tüysüz, Chem. Asian J. 11, 22 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Seo, T. Takata, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, K. Domen, J. Am. Chem. Soc. 137, 12780 (2015)CrossRefGoogle Scholar
  5. 5.
    S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S.S.K. Ma, F.X. Zhang, K. Domen, C. Li, Angew. Chem. Int. Ed. 54, 8498 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Ide, N. Inami, H. Hattori, K. Saito, M. Sohmiya, N. Tsunoji, K.J. Komaguchi, T. Sano, Y. Bando, D. Golberg, Y. Sugahara, Angew. Chem. Int. Ed. 55, 3600 (2016)CrossRefGoogle Scholar
  7. 7.
    A. Lwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc. 138, 10260 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudome, M. Zhong, C.Z. Wang, Z.H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y.B. Li, I.D. Sharp, A. Kudo, T. Yamada, K. Domen, Nat. Mater. 15, 611 (2016)CrossRefGoogle Scholar
  9. 9.
    B.H. Wu, D.Y. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, J. Am. Chem. Soc. 138, 1114 (2016)CrossRefGoogle Scholar
  10. 10.
    S.P. Phivilay, A.A. Puretzky, K. Domen, I.E. Wachs, ACS Catal. 3, 2920 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Nakamura, K. Asano, M. Ishimaru, K. Sato, M. Takahashi, H. Numakura, J. Mater. Res. 29, 753 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Sakamoto, T. Ohara, N. Yasumoto, Y. Shiraishi, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 137, 9324 (2015)CrossRefGoogle Scholar
  13. 13.
    C.S. Pan, T. Takata, K. Kumamoto, S.S.K. Ma, K. Ueda, T. Minegishi, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, K. Domen, J. Mater. Chem. A 4, 4544 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Chem. Asian J. 7, 642 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Anandan, N. Pugazhenthiran, T. Selvamani, S.-H. Hsieh, G.J. Lee, J.J. Wu, Catal. Sci. Technol. 2, 2502 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess, J. Am. Chem. Soc. 136, 17530 (2014)CrossRefGoogle Scholar
  17. 17.
    Y.G. Zhao, J.J. Liu, C.G. Liu, F. Wang, Y. Song, ACS Catal. 6, 4127 (2016)CrossRefGoogle Scholar
  18. 18.
    Tobias Grewe, Harun Tüysüz, ACS Appl. Mater. Interfaces 7, 23153 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z.Y. Sun, C. Somsen, M. Muhler, W. Schuhmann, Adv. Energy Mater. 6, 1502313 (2016)CrossRefGoogle Scholar
  20. 20.
    N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu, K.Q. Nie, X.H. Sun, J.H. Guo, S.R. Leone, P.D. Yang, J. Am. Chem. Soc. 137, 7448 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Vrubel, X.L. Hu, ACS Catal. 3, 2002 (2013)CrossRefGoogle Scholar
  22. 22.
    W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, J. Am. Chem. Soc. 136, 2843 (2014)CrossRefGoogle Scholar
  23. 23.
    J.W. Hennek, M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 134, 9593 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Huang, Y.Y. Liu, L.F. Lu, L. Li, Res. Chem. Intermed. 38, 487 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Li, T. Sasaki, Y. Shimizu, N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008)CrossRefGoogle Scholar
  26. 26.
    H.X. Dang, Y.M. Lin, K.C. Klavetter, T.H. Cell, A. Heller, C.B. Mullins, ChemElectroChem 1, 158 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Joseph, P. Bourson, M.D. Fontana, J. Raman Spectrosc. 43, 1146 (2012)CrossRefGoogle Scholar
  28. 28.
    T.T.H. Imai, S. Miyoshi, P.-A. Glans, J.H. Guo, S. Yamaguchi, Phys. Chem. Chem. Phys. 13, 17013 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.S. Chen, J.L.G. Fierro, T. Tanaka, I.E. Wachs, J. Phys. Chem. B 107, 5243 (2003)CrossRefGoogle Scholar
  30. 30.
    P.S. Dobal, R.S. Katiyar, Y. Jiang, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 31, 1061 (2000)CrossRefGoogle Scholar
  31. 31.
    J. Jiang, M.R. Gao, W.C. Sheng, Y.S. Yan, Angew. Chem. Int. Ed. 55, 1 (2016)CrossRefGoogle Scholar
  32. 32.
    R.V. Gonçalves, R. Wojcieszak, P.M. Uberman, S.R. Teixeira, L.M. Rossi, Phys. Chem. Chem. Phys. 16, 5755 (2014)CrossRefGoogle Scholar
  33. 33.
    M.M. Zhu, Z.J. Zhang, W. Miao, Appl. Phys. Lett. 89, 021915 (2006)CrossRefGoogle Scholar
  34. 34.
    X.J. Wang, W.Y. Yang, F.T. Li, J. Zhao, R.H. Liu, S.J. Liu, B. Li, J. Hazard. Mater. 292, 126 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Grewe, H. Tüysüz, Chemsuschem 8, 3084 (2015)CrossRefGoogle Scholar
  36. 36.
    Y.F. Zhu, F. Yua, Y. Man, Q.Y. Tiana, Y. Hea, N. Wu, J. Solid State Chem. 178, 224 (2005)CrossRefGoogle Scholar
  37. 37.
    L.Z. Tao, B. Yan, Y. Liang, B.Q. Xu, Green Chem. 15, 696 (2013)CrossRefGoogle Scholar
  38. 38.
    L.M. Guo, H. Hagiwara, S. Ida, T. Daio, T. Ishihara, A.C.S. Appl, Mater. Interfaces 5, 11080 (2013)CrossRefGoogle Scholar
  39. 39.
    N.N. Zhang, H.L. Xiong, Y.L. Liu, R.Q. Li, Z.H. Leng, S.C. Gan, Appl. Surf. Sci. 357, 255 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z.H. Kang, Science 347, 970 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Ziolek, I. Sobczak, P. Decyk, K. Sobanska, P. Pietrzyk, Z. Sojka, Appl. Catal. B: Environ. 164, 288 (2015)CrossRefGoogle Scholar
  42. 42.
    G.L. Zhu, T.Q. Lin, H.L. Cui, W.L. Zhao, H. Zhang, F.Q. Huang, A.C.S. Appl, Mater. Interfaces 8, 122 (2016)CrossRefGoogle Scholar
  43. 43.
    H.M. Fan, T.F. Jiang, H.Y. Li, D.J. Wang, L.L. Wang, J.L. Zhai, D.Q. He, P. Wang, T.F. Xie, J. Phys. Chem. C 116, 2425 (2012)CrossRefGoogle Scholar
  44. 44.
    T. Grewe, H. Tysüüz, J. Mater. Chem. A 4, 3007 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Humayun, A. Zada, Z.J. Li, M.Z. Xie, X.L. Zhang, Y. Qu, F. Raziq, L.Q. Jing, Appl. Catal. B: Environ. 180, 219 (2016)CrossRefGoogle Scholar
  46. 46.
    J.Y. Duan, W.D. Shi, L.L. Xu, G.Y. Mou, Q.L. Xin, J.G. Guan, Chem. Commun. 48, 7301 (2012)CrossRefGoogle Scholar
  47. 47.
    H.J. Yu, Y.F. Zhao, C. Zhou, L. Shang, Y. Peng, Y.H. Cao, L.Z. Wu, C.-H. Tung, T.R. Zhang, J. Mater. Chem. A 2, 3344 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.A State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations