Research on Chemical Intermediates

, Volume 43, Issue 11, pp 6571–6588 | Cite as

Modifications of pure and Ag doped TiO2 by pre-sulphated and calcination temperature treatments

  • Najm us Saqib
  • Rohana AdnanEmail author
  • Irfan Shah


Pre-sulphated pure and Ag doped TiO2 photocatalysts were prepared by a modified low cost liquid impregnation method followed by acid (H2SO4) treatments. Surface and morphological characterizations of the prepared samples as well as their photocatalytic activity towards methyl orange (MO) were studied. The influence of sulphate pretreatment on the surface of pure TiO2, the dispersion of deposit metals and the particle size were analyzed for the samples exposed to different calcination temperature (i.e. 500, 600 and 700 °C) treatments. The physical characterizations of the photocatalysts were investigated using diffused reflectance spectroscopy (UV–Vis DRS), XRD, BET, TEM, SEM and EDX analyses. The Kubelka–Munk function was used to determine the band gap energy for all prepared samples, whereby the band gap energy of pre-sulphated 1% Ag doped TiO2 was found to be reduced to 2.95 eV. Photocatalytic activity towards the degradation of MO was found to be enhanced between 30 and 37% for the 1% Ag/TiO2-S compared to the undoped TiO2-S samples. The pre-sulphated sample of 1% Ag/TiO2-S calcined at 700 °C showed up to 80% degradation of MO under normal compact fluorescent light.


Titanium dioxide Ag doping Sulphate treatment Photocatalysis 



The authors would like to acknowledge the financial support by Universiti Sains Malaysia (USM) under the RUI Grant No. 1001/PKIMIA/811333. NS is also thankful to The World Academy of Sciences (TWAS) and USM for awarding the TWAS–USM Fellowship to pursue this study.


  1. 1.
    H.H. Huang, D.H. Tseng, L.C. Juang, Chemosphere 71, 398–405 (2008)CrossRefGoogle Scholar
  2. 2.
    R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, Korean J. Chem. Eng. 25, 64–72 (2008)CrossRefGoogle Scholar
  3. 3.
    X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, M. Lu, G. Yuan, Z. Wang, M. Zheng, H.J. Seo, Nanoscale Res. Lett. 9, 34 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Li, L. Wang, X. Lu, J. Hazard. Mater. 177, 639–647 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Barka, S. Qourzal, A. Assabbane, Y. Ait-Ichou, J. Environ. Sci. Eng. 4, 1–5 (2010)Google Scholar
  6. 6.
    Y.B. Lin, Y.M. Yang, B. Zhuang, S.L. Huang, L.P. Wu, Z.G. Huang, F.M. Zhang, Y.W. Du, J. Phys. D Appl. Phys. 41, 195007 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Chen, S. Samuel, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  8. 8.
    I. Cacciotti, A. Bianco, B. Pezzotti, G. Gusmano, J. Chem. Eng. 166, 751–764 (2011)CrossRefGoogle Scholar
  9. 9.
    A.A. Ashkarran, S.A. Aghigh, M. Kavianipour, N.J. Farahani, Curr. Appl. Phys. 11, 1048–1055 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Maicu, M.C. Hidalgo, G. Colon, J.A. Navio, J. Photochem. Photobiol. A Chem. 217, 275–283 (2011)CrossRefGoogle Scholar
  11. 11.
    M.I. Danish, I.A. Qazi, A. Zeb, A. Habib, M.A. Awan, Z. Khan, J. Nanomater. 1, 9–25 (2013)Google Scholar
  12. 12.
    G.L. Liu, D.W. Zhu, S.J. Liao, L.Y. Ren, J.Z. Cui, W.B. Zhou, J. Hazard. Mater. 172, 1424–1429 (2009)CrossRefGoogle Scholar
  13. 13.
    U.I. Gaya, Eur. J. Chem. 2, 163–167 (2011)CrossRefGoogle Scholar
  14. 14.
    S.S. Valencia, J.M. Marın, G. Restrepo, Open Mater. Sci. J. 4, 9–14 (2010)Google Scholar
  15. 15.
    S. López-Romero, S.J. Castillo-Mendoza, J. Chávez-Ramírez, K. Díaz-Becerril, Materia 8, 341–349 (2003)Google Scholar
  16. 16.
    I. Shah, R. Adnan, W.S. Wan Ngah, N. Mohamed, Mater. Sci. Eng. B 201, 1–12 (2015)CrossRefGoogle Scholar
  17. 17.
    M.A. Behnajady, N. Modirshahla, M. Shokri, B. Rad, Glob. NEST J. 10, 1–7 (2008)Google Scholar
  18. 18.
    E. Szabó-Bárdos, H. Czili, A. Horváth, J. Photochem. Photobiol. A Chem. 154, 195–201 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Uzunova-Bujnova, R. Todorovska, D. Dimitrov, D. Todorovsky, J. Appl. Surf. Sci. 254, 7296–7302 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, Catal. Commun. 8, 1088–1093 (2007)CrossRefGoogle Scholar
  21. 21.
    J.H. He, I. Ichinose, T. Kunitake, A. Nakao, Langmuir 18, 10005–10010 (2002)CrossRefGoogle Scholar
  22. 22.
    H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, J. Eur. Ceram. Soc. 23, 1457–1464 (2003)CrossRefGoogle Scholar
  23. 23.
    J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu, L. Li, Adv. Mater. 28, 2259–2265 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Yang, H. Fei, G. Ruan, C. Xiang, J.M. Tour, Adv. Mater. 26, 8163–8168 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Demirci, T. Dikici, M. Yurddaskal, S. Gultekin, M. Toparli, E. Celik, Appl. Surf. Sci. 390, 591–601 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Grzelak, T. Jaroń, Z. Mazej, T. Michałowski, P. Szarek, W. Grochala, J. Electron Spectrosc. Relat. Phenom. 202, 38–45 (2015)CrossRefGoogle Scholar
  27. 27.
    X.T. Zhou, H.B. Ji, X.J. Huang, Molecules 17, 1149–1158 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Sohrabi, F. Akhlaghian, Iran. J. Chem. Chem. Eng. 35, 45–50 (2016)Google Scholar
  29. 29.
    M. Khatamian, N. Daneshvar, S. Sabaee, Iran. J. Chem. Chem. Eng. 29, 19–26 (2010)Google Scholar
  30. 30.
    S. Janitabar Darzi, A.R. Mahjoub, A. Nilchi, Iran. J. Chem. Chem. Eng. 29, 37–42 (2010)Google Scholar
  31. 31.
    M.N. Rashed, A.A. El-Amin, Int. J. Phys. Sci. 2, 073–081 (2007)Google Scholar
  32. 32.
    A.O. Ibhadon, G.M. Greenway, Y. Yue, Catal. Commun. 9, 153–157 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Hamadanian, A. Reisi-Vanani, A. Majedi, J. Iran. Chem. Soc. 7, S52–S58 (2010)CrossRefGoogle Scholar
  34. 34.
    N. Wang, J. Li, L. Zhu, Y. Dong, H. Tang, J. Photochem. Photobiol. A Chem. 198, 282–287 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations