Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 4, pp 2253–2272 | Cite as

Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed column: experimental and modelling study

  • Hakimeh Sharififard
  • Mansooreh Soleimani
  • Francesco Pepe
Article

Abstract

In this work, iron nanoparticles were impregnated onto a commercial activated carbon surface to produce a novel adsorbent called iron-activated carbon nanocomposite (I-AC). Commercial activated carbon (CAC) and I-AC were used for vanadium separation in a fixed-bed column. The effects of various operating parameters such as inlet vanadium ion concentration, adsorbent dose and volumetric flow rate on vanadium separation performance of CAC were investigated. The performance of both adsorbents was compared in three adsorption/desorption cycles. The experimental breakthrough curves of vanadium ions in the fixed-bed column were modeled using the film-pore-surface diffusion model (FPSDM). The four mass transfer parameters characterizing this model, namely the external mass-transfer coefficient (k f ), pore and surface diffusion coefficients (D p and D s ), and axial dispersion coefficient (D L ) were evaluated through the model. Modelling and experimental results showed that the I-AC nanocomposite has a better performance for vanadium separation in comparison to AC. Sensitivity analysis on the FPSDM showed that the pore and surface diffusion, external mass transfer and axial dispersion play a significant role in vanadium separation using the I-AC. On the other hand, surface diffusion resulted to be relatively less important when CAC was used.

Keywords

Adsorption breakthrough curves I-AC nanocomposite Vanadium FPSDM model 

Notes

Acknowledgments

The authors acknowledge with a great degree of appreciation that this project was financially supported by a research grant (research project No. 61736) from the Iran Nano Technology Initiative Council, Iran. The authors sincerely thank Professors Paolo Aprea and Bruno de Gennaro for providing and their assistance in column experiments and analyzing the samples by ICP.

References

  1. 1.
    T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, J. Coll. Interf. Sci. 301, 436–440 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Chi-Wai, C. Buning, G. McKay, Langmuir 19, 4188–4196 (2003)CrossRefGoogle Scholar
  3. 3.
    L. Lv, Y. Zhang, K. Wang, A.K. Ray, X.S. Zhao, J. Coll. Interf. Sci. 325, 57–63 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Marsh, F. Rodriguez-Reinoso, Activated carbon (Elsevier, New York, 2006)Google Scholar
  5. 5.
    H. Mao, R. Huang, Z. Hashisho, S. Wang, H. Chen, H. Wang, D. Zhou, Res. Chem. Intermed. 42, 3359–3371 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Chand-Bansal, M. Goyal, Activated carbon adsorption (Taylor & Francis, Boca Raton, 2005)CrossRefGoogle Scholar
  7. 7.
    A.M. Cooper, K.D. Hristovski, T. Möller, P. Westerhoff, P. Sylvester, J. Hazard. Mater. 183, 381–388 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Depci, Chem. Eng. J. 181–182, 467–478 (2012)CrossRefGoogle Scholar
  9. 9.
    J.H. Xu, N. Gao, Y. Deng, S. Xia, Chem. Eng. J. 222, 520–526 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, V.K. Gupta, Res. Chem. Intermed. (2015). doi: 10.1007/s11164-015-2285-x Google Scholar
  11. 11.
    Q. He, J. Dai, L. Zhu, K. Xiao, Y. Yin, J. Alloy. Compd. 687, 326–333 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Asfaram, M. Ghaedi, S. Hajati, A. Goudarzi, E. Alipanahpour Dil, Ultrason. Sonochem. 34, 1–12 (2017)CrossRefGoogle Scholar
  13. 13.
    H.S. Park, J. Reddy Koduru, K.H. Choo, B. Lee, J. Hazard. Mater. 286, 315–324 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Wyers, Br. J. Ind. Med. 31, 177–182 (1946)Google Scholar
  15. 15.
    B. Patel, G.E. Henderson, S.J. Haswell, R. Grzeskowiak, Analyst 115, 1063–1066 (1990)CrossRefGoogle Scholar
  16. 16.
    A.P. Rodríguez, J.A.H. Viezcas, J.R.P. Videa, G.L.G. Torresdey, O.P. Pérez, F.R.R. Velázquez, Microchem. J. 118, 1–11 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Alibrahim, H. Shlewit, S. Alike, Chem. Eng. J. 52(1), 29–33 (2008)Google Scholar
  18. 18.
    M. Nabavinia, M. Soleimani, A. Kargari, Int. J. Chem. Environ Eng. 3, 149–152 (2012)Google Scholar
  19. 19.
    H. Sharififard, F. Pepe, M. Soleimani, P. Aprea, D. Caputo, RSC Adv. 6, 42845–42853 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Sharififard, M. Soleimani, RSC Adv. 5, 80650–80660 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Kakavandi, R. Rezaie Kalantary, A. Jonidi Jafari, S. Nasseri, A. Ameri, A. Esrafili, A. Azari, Clean Soil Air Water 43, 1157–1166 (2015)CrossRefGoogle Scholar
  22. 22.
    F.B. Aarden, Adsorption onto heterogeneous porous materials: equilibria and kinetics. PhD Dissertation (Technische Universiteit, Eindhoven, 2001)Google Scholar
  23. 23.
    S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous materials and powders: surface area, pore size and density (Springer, Dordrecht, 2004)CrossRefGoogle Scholar
  24. 24.
    J.A. Arcibar-Orozco, J. Rene Rangel-Mendez, T.J. Bandosz, J. Hazard. Mater. 246–247, 300–309 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Hydari, H. Sharififard, M. Nabavinia, M.R. Parvizi, Chem. Eng. J. 193–194, 276–282 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Al-Qodah, R. Shawabkah, Braz. J. Chem. Eng. 26, 127–136 (2009)CrossRefGoogle Scholar
  27. 27.
    Y. Li, C. Zhu, T. Lu, Z. Guo, D. Zhang, J. Ma, S. Zhu, Carbon 52, 565–573 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Cambier, Clay Miner. 21, 191–200 (1986)CrossRefGoogle Scholar
  29. 29.
    C. Namasivayam, D. Sangeetha, Adsorption 12, 103–117 (2006)CrossRefGoogle Scholar
  30. 30.
    K. Prathap, C. Namasivayam, Environ. Chem. Lett. 8, 363–371 (2010)CrossRefGoogle Scholar
  31. 31.
    Q. Hu, H. Paudyal, J. Zhao, F. Huo, K. Inoue, H. Liu, Chem. Eng. J. 248, 79–88 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, X. Liu, W. Xiab, W. Zhang, Int. J. Biol. Macromol. 64, 155–161 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Wang, Z. Cheng, B. Wang, W. Ma, Chem. Eng. J. 181–182, 182–188 (2012)CrossRefGoogle Scholar
  34. 34.
    D.M. Ruthven, Principles of adsorption and adsorption processes (Wiley, New York, 1984)Google Scholar
  35. 35.
    M. Suzuki, Adsorption engineering (Kodansha, Tokyo, 1990)Google Scholar
  36. 36.
    J. Sotelo, L.G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán, J. García, Chem. Eng. J. 240, 443–453 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Songolzadeh, M. Soleimani, M. Takht, Ravanchi. J. Nat. Gas Sci. Eng. 27, 831–841 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Afroze, T.K. Sen, H.M. Ang, Res. Chem. Intermed. 42, 2343–2346 (2016)CrossRefGoogle Scholar
  39. 39.
    V. Inglezakis, S. Poulopoulos, Adsorption, ion exchange and catalyst: design of operations and environmental application (Elsevier, Amsterdam, 2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hakimeh Sharififard
    • 1
  • Mansooreh Soleimani
    • 1
  • Francesco Pepe
    • 2
  1. 1.Department of Chemical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Dipartimento di IngegneriaUniversità del SannioBeneventoItaly

Personalised recommendations