Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 4, pp 2067–2080 | Cite as

AgBr@TiO2/GO ternary composites with enhanced photocatalytic activity for oxidation of benzyl alcohol to benzaldehyde

  • Jingyan Si
  • Ya Liu
  • Shunzhou Chang
  • Di Wu
  • Baozhu Tian
  • Jinlong Zhang
Article

Abstract

AgBr@TiO2/GO (graphene oxide) ternary composite photocatalyst was synthesized by fabricating core–shell-structured AgBr@TiO2 and anchoring it onto the surface of GO. The obtained samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, ultraviolet–visible (UV–Vis) diffuse reflectance spectrum, and photoluminescence (PL) spectroscopy. It was found that the AgBr nanoparticles were prone to aggregation while the core–shell-structured AgBr@TiO2 possessed excellent dispersity. PL analysis revealed that the ternary-structured AgBr@TiO2/GO could effectively promote the separation rate of electron–hole pairs. Photocatalytic oxidation of benzyl alcohol to benzaldehyde under visible-light irradiation was selected as probe reaction to evaluate the photocatalytic activity of the different samples. It was found that the AgBr@TiO2/GO ternary composite exhibited evidently improved photocatalytic activity compared with AgBr, AgBr@TiO2, and AgBr/GO. On the basis of the experiment results, the photocatalytic oxidation mechanism of benzyl alcohol over AgBr@TiO2/GO is tentatively discussed.

Keywords

AgBr/TiO2/GO Photocatalytic oxidation Benzyl alcohol Benzaldehyde Photocatalytic activity 

Notes

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (21277046, 21573069, 21377038) and the National Basic Research Program of China (973 Program, 2013CB632403).

References

  1. 1.
    H.F. Chen, W.J. Wang, B.B. Huang, Z.Y. Wang, J. Zhan, X.Y. Qin, X.Y. Zhang, Y. Dai, Tailoring AgI nanoparticles for the assembly of AgI/BiOI hierarchical hybrids with size-dependent photocatalytic activities. J. Mater. Chem. A 1, 7131–7136 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Zhu, C.J. Li, F. Teng, B.Z. Tian, J.L. Zhang, Recyclable Ag@AgBr-gelatin film with superior visible-light photocatalytic activity for organic degradation. Res. Chem. Intermed. 41, 9715–9730 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Yang, B.Z. Tian, J.L. Zhang, T.T. Wang, Preparation, characterization, and photocatalytic activity of porous AgBr@Ag and AgBrI@Ag plasmonic photocatalysts. Appl. Surf. Sci. 292, 256–261 (2014)CrossRefGoogle Scholar
  4. 4.
    Q. Sun, X.R. Jia, X.F. Wang, H.G. Yu, J.G. Yu, Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance. Dalton Trans. 44, 14532–14539 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Nasir, J.L. Zhang, F. Chen, B.Z. Tian, Detailed study of Ce and C codoping on the visible light response of titanium dioxide. Res. Chem. Intermed. 41, 1607–1624 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber hetero architectures. ACS Appl. Mater. Interfaces 4, 424–430 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.H. Zhang, J.L. Long, L.F. Yang, W.K. Chen, W.X. Dai, X.Z. Fu, X.X. Wang, Organic semiconductor for artificial photosynthesis: water splitting into hydrogen by a bioinspired C3N3S3 polymer under visible light irradiation. Chem. Sci. 2, 1826–1830 (2011)CrossRefGoogle Scholar
  8. 8.
    B.X. Wang, W.J. An, L. Liu, W. Chen, Y.H. Liang, W.Q. Cui, Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light. RSC Adv. 5, 3224–3231 (2015)CrossRefGoogle Scholar
  9. 9.
    X.W. Wang, L.C. Yin, G. Liu, L.Z. Wang, R. Saito, G.Q. Lu, H.M. Cheng, Polar interface-induced Improvement in high photocatalytic hydrogen evolution over ZnO–CdS heterostructures. Energy Environ. Sci. 4, 3976–3979 (2011)CrossRefGoogle Scholar
  10. 10.
    W.Z. Kong, B.Z. Tian, J.L. Zhang, D.N. He, M. Anpo, Microstructure and hydrogen production activity of Pt–TiO2 prepared by precipitation–photodeposition. Res. Chem. Intermed. 39, 1701–1710 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Lee, K. Lee, W.D. Kim, S. Lee, D.J. Shin, D.C. Lee, Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. J. Phys. Chem. C 118, 23627–23634 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Chen, Y.J. Xu, Ultrathin TiO2 layer coated-CdS spheres core–shell nanocomposite with enhanced visible-light photoactivity. ACS Appl. Mater. Interfaces 5, 13353–13363 (2013)CrossRefGoogle Scholar
  13. 13.
    S.Q. Liu, N.Z. Zhang, R. Tang, Y.J. Xu, Synthesis of one dimensional CdS@TiO2 core–shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell. ACS Appl. Mater. Interfaces 4, 6378–6385 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, P. Zhang, B.Z. Tian, J.L. Zhang, Core–shell structural CdS@SnO2 nanorods with excellent visible light photocatalytic activity for the selective oxidation of benzyl alcohol to benzaldehyde. ACS Appl. Mater. Interfaces 7, 13849–13858 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Zhang, P.Y. Wu, S.Y. Bao, Z. Wang, B.Z. Tian, J.L. Zhang, Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J. 306, 1151–1161 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Fujishima, T.N. Rao, D.A. Truk, Titanium dioxide photocatalysis. Photochem. Photobiol. C 1, 1–21 (2000)CrossRefGoogle Scholar
  17. 17.
    B.Z. Tian, R.F. Dong, J.M. Zhang, S.Y. Bao, F. Yang, J.L. Zhang, Sandwich-structured AgCl@Ag@TiO2 with excellent visible-light photocatalytic activity for organic pollutant degradation and E. coli K12 inactivation. Appl. Catal. B 158–159, 76–84 (2014)CrossRefGoogle Scholar
  18. 18.
    M.Y. Xing, B.X. Yang, H. Yu, B.Z. Tian, S. Bagwasi, J.L. Zhang, X.Q. Gong, Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J. Phys. Chem. Lett. 4, 3910–3917 (2013)CrossRefGoogle Scholar
  19. 19.
    B.Z. Tian, C.Z. Li, J.L. Zhang, One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 191, 402–409 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B 106, 445–452 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Wang, B.B. Huang, X.Y. Zhang, Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem. Eur. J. 15, 1821–1824 (2009)CrossRefGoogle Scholar
  22. 22.
    B.Z. Tian, T.T. Wang, R.F. Dong, S.Y. Bao, F. Yang, J.L. Zhang, Core–shell structured γ-Fe2O3@SiO2@AgBr:Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl. Catal. B 147, 22–28 (2014)CrossRefGoogle Scholar
  23. 23.
    R.F. Dong, B.Z. Tian, J.L. Zhang, T.T. Wang, Q.S. Tao, S.Y. Bao, F. Yang, C.Y. Zeng, AgBr@Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability. Catal. Commun. 38, 16–20 (2013)CrossRefGoogle Scholar
  24. 24.
    B.Z. Tian, J.L. Zhang, Morphology-controlled synthesis and applications of silver halide photocatalytic materials. Catal. Surv. Asia 16, 210–230 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Wang, B.B. Huang, Y. Dai, M.H. Whangbo, Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 14, 9813–9825 (2012)CrossRefGoogle Scholar
  26. 26.
    B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO—an efficient nano-photocatalyst for the mineralization of acid black 1 with UV light. Sep. Purif. Technol. 85, 35–44 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Cao, B.D. Luo, H.L. Lin, S.F. Chen, Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation. J. Hazard. Mater. 190, 700–706 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Sang, Y. Huang, W. Wang, Z. Fang, B.Y. Geng, Low cost visible light driven plasmonic Ag–AgBr/BiVO4 system: fabrication and application as an efficient photocatalyst. RSC Adv. 5, 39651–39656 (2015)CrossRefGoogle Scholar
  29. 29.
    M.S. Zhu, P.L. Chen, M.H. Liu, Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5, 4529–4536 (2011)CrossRefGoogle Scholar
  30. 30.
    C.Y. Zeng, M. Guo, B.Z. Tian, J.L. Zhang, Reduced graphene oxide modified Ag/AgBr with enhanced visible light photocatalytic activity for methyl orange degradation. Chem. Phys. Lett. 575, 81–85 (2013)CrossRefGoogle Scholar
  31. 31.
    M.S.A.S. Shah, W.J. Kim, J.Y. Park et al., Highly efficient and recyclable nanocomplexed photocatalysts of AgBr/N-doped and amine-functionalized reduced graphene oxide. ACS Appl. Mater. Interfaces 6, 20819–20827 (2014)CrossRefGoogle Scholar
  32. 32.
    B.C. Qiu, M.Y. Xin, J.L. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium–ion batteries. J. Am. Chem. Soc. 136, 5852–5855 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Dai, M. Xie, S.G. Meng, X.L. Fu, S.F. Chen, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g–C3N4 photocatalyst under visible light irradiation. Appl. Catal. B 158–159, 382–390 (2014)CrossRefGoogle Scholar
  34. 34.
    J.L. Zhang, Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka, M. Anpo, Relationship between the local structures of titanium oxide photocatalysts and their reactivities in the decomposition of NO. J. Phys. Chem. B 105, 8395–8398 (2001)CrossRefGoogle Scholar
  35. 35.
    B.Z. Tian, C.Z. Li, F. Gu, H.B. Jiang, Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2. Catal. Commun. 10, 925–929 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Lab for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Research Institute of Physical and Chemical Engineering of Nuclear IndustryTianjinPeople’s Republic of China

Personalised recommendations