Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 3, pp 1783–1792 | Cite as

Preparation of zinc chabazite (ZnCHA) for CO2 capture

  • Tao Du
  • Shuai Che
  • Liying Liu
  • Xin Fang
Article

Abstract

ZnCHA was successfully synthesized, and their potentials for CO2 capture under different conditions were also evaluated for the first time. Furthermore, SrCHA, CaCHA and MgCHA chabazite were also prepared for comparison purposes. The structure and morphology of cation-exchanged chabazites were characterized with various experimental techniques such as XRD, SEM and XRF. The CO2 and N2 adsorption isotherms on chabazites was also investigated, demonstrating that ZnCHA exhibited larger CO2/N2 selectivity comparing to CaCHA, MgCHA and SrCHA at 273 and 298 K.

Keywords

Chabazite Cation exchange Zinc Strontium Heat of adsorption CO2 capture 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of Natural Science Foundation of China (Grant Nos.51474067&51406029) and the Fundamental Research Funds for the Central Universities (N120302006).

References

  1. 1.
    D. Simon, M. Alec, Strategic appraisal of environmental risks: a contrast between the United Kingdom’s stern review on the economics of climate change and its committee on radioactive waste management. Risk Anal. 31, 129–142 (2011)CrossRefGoogle Scholar
  2. 2.
    K. Alexande, V. Edzo, Global change: indirect feedbacks to rising CO2. Nature 475, 177–178 (2011)Google Scholar
  3. 3.
    H.K. Zenz, B. Antonio, R. Manya, Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 108, 20428–20433 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Corine, R. Julien, B. Magali, Ecodesign of ordered mesoporous silica materials. Chem. Soc. Rev. 42, 4217–4255 (2013)CrossRefGoogle Scholar
  5. 5.
    N. Patrick, B. Youssef, L. Ryan et al., Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Coombs, A. Albert, T. Armbruster, Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Can. Mineral 35, 1571–1606 (1997)Google Scholar
  7. 7.
    J.E. Park, H.K. Youn, S.T. Yang, CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catal. Today 190, 15–22 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Sadao, K. Yasato, T. Shunsuke, Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. J. Colloid Interface Sci. 388, 185–190 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Miyamoto, Y. Fujiokax, K. Yogo, Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. J. Mater. Chem. 22, 20186–20189 (2012)CrossRefGoogle Scholar
  10. 10.
    R.M. Barrer, R. Papadopoulos, J.D.F. Ramsay, The sorption of krypton and xenon in zeolites at high pressures and temperatures. II. Comparison and analysis. Proc. R. Soc. Lond. A 326, 331–345 (1972)CrossRefGoogle Scholar
  11. 11.
    D. Bonenfant, M. Kharoune, P. Niquette, Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9, 70–71 (2016)Google Scholar
  12. 12.
    B. Coughlan, P.M. Larkin, Physical sorption in transition metal loaded molecular sieves: application of the Koble-Corrigan and other isotherm equations to the equilibria. Proc. R. Irish Acad. 77, 383–395 (1977)Google Scholar
  13. 13.
    B. Coughlan, W.A. Mccann, On the crystal stability of outgassed NiA zeolites. Proc. R. Irish Acad. 76, 349–358 (1976)Google Scholar
  14. 14.
    A. Khelifa, Z. Derriche, A. Bengueddach, Sorption of carbon dioxide by zeolite X exchanged with Zn2+ and Cu2+. Microporous Mesoporous Mater. 32, 199–209 (1999)CrossRefGoogle Scholar
  15. 15.
    R.K. Singh, P. Webley, Adsorption of N2, O2 and Ar in potassium chabazite. Adsorption 11, 173–177 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Zhang, R. Singh, P.A. Webley, Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111, 478–487 (2008)CrossRefGoogle Scholar
  17. 17.
    F.N. Ridha, P.A. Webley, Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Microporous Mesoporous Mater. 132, 22–30 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Shang, G. Li, R. Singh et al., Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012)CrossRefGoogle Scholar
  19. 19.
    L.A. Barbosa, R.A. van Santen, J. Hafner, Stability of Zn(II) cations in chabazite studied by periodical density functional theory. J. Am. Chem. Soc. 123, 4530–4540 (2001)CrossRefGoogle Scholar
  20. 20.
    M. Bourgogne, J.L. Guth, R. Wey, Process for the preparation of an improved chabazite for the purification of bulk gases, US Patent No. 4503024 (1985)Google Scholar
  21. 21.
    T.R. Gaffney, Microporous crystalline material coprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using sameus, Patent No. 5026532 (1991)Google Scholar
  22. 22.
    F.N. Ridha, Y. Yang, P.A. Webley, Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y. Microporous Mesoporous Mater. 117, 497–507 (2009)CrossRefGoogle Scholar
  23. 23.
    W.J. Mortier, J.J. Pluth, J.V. Smith, Positions of cations and molecules in zeolites with the mordenite-type framework: III Rehydrated Ca-exchanged ptilolite. Mater. Res. Bull. 11, 15–21 (1976)CrossRefGoogle Scholar
  24. 24.
    M. Calligaris, A. Mezzetti, G. Nardin et al., Cation sites and framework deformations in dehydrated chabazites. Crystal structure of a fully silver-exchanged chabazite. Zoelites 4, 323–328 (1984)CrossRefGoogle Scholar
  25. 25.
    F.J. Torres, B. Civalleri, A. Terentyev et al., Theoretical study of molecular hydrogen adsorption in Mg-exchanged chabazite. J. Phys. Chem. C 111, 1871–1873 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Grey, J. Gale, D. Nicholson et al., A computational study of calcium cation locations and diffusion in chabazite. Microporous Mesoporous Mater. 31, 45–59 (1999)CrossRefGoogle Scholar
  27. 27.
    B.D. Gennaro, A. Colella, P. Aprea et al., Evaluation of an intermediate-silica sedimentary chabazite as exchanger for potentially radioactive cations. Microporous Mesoporous Mater. 61, 159–165 (2003)CrossRefGoogle Scholar
  28. 28.
    L.A.M.M. Barbosa, R.A.V. Santen, The activation of H2 by zeolitic Zn(II) cations. J. Phys. Chem. C 111, 8337–8348 (2007)CrossRefGoogle Scholar
  29. 29.
    F. Rezaei, P.A. Webley, Structured adsorbents in gas separation processes. Sep. Purif. Technol. 70, 243–256 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.State Environmental Protection Key Laboratory on Eco-IndustryNortheastern UniversityShenyangChina

Personalised recommendations