Research on Chemical Intermediates

, Volume 43, Issue 3, pp 1429–1445 | Cite as

Microwave drying kinetics of mussels (Mytilus edulis)

  • Azmi Seyhun Kipcak


Mussels (Mytilus edulis) can be consumed as an alternative food product for several meats, such as beef and fish, due to their high protein content. In this study, several microwave power levels (90, 180, 360, 600 and 800 W) were applied to Mytilus edulis to determine their effect on drying kinetics, rehydration characteristics and energy consumptions. The optimal drying times of 16, 5 and 2 min were determined for microwave power levels of 90, 180 and 360 W, respectively. However, at the microwave power levels of 600 and 800 W, the optimal drying times were 80 and 60 s, respectively. The experimental results indicate that the drying kinetics, rehydration characteristics and energy consumptions are slightly affected by the change in microwave power levels. Seven different thin-layer drying models that are widely used in the literature were applied to the experimental data. The results showed that the Weibull model best fits the experimental data (R 2: 0.998135–0.999929, χ 2: 0.000029–0.000401, and RMSE: 0.004172–0.018733) of the drying kinetics of Mytilus edulis. The effective moisture diffusivity was determined to be between 2.74 × 10−8 and 4.79 × 10−7 m2/s. Using a modified Arrhenius-type equation, the activation energy was found to be 95.131 kW/kg. The microwave power level of 360 W was found to be the most effective, considering the minimum energy consumption.

Graphical Abstract


Activation energy Effective moisture diffusivity Energy consumption Microwave drying Mussel 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    P. Sterry, Collins Complete Guide to British Wildlife, ISBN 978-0-00-723683-1 (HarperCollins, 1997)Google Scholar
  2. 2.
    FAO (Food and Agriculture Organization of the United Nations) (Fishery and Aquaculture Department, 2015). Accessed 06 May 2015
  3. 3.
    I. Doymaz, A.S. Kipcak, S. Piskin, Czech J. Food Sci. 33, 83 (2015)CrossRefGoogle Scholar
  4. 4.
    I. Doymaz, A.S. Kipcak, S. Piskin, Czech J. Food Sci. 33, 367 (2015)CrossRefGoogle Scholar
  5. 5.
    E. Demirhan, B. Özbek, J. Food Process. Preserv. 34, 476 (2010)CrossRefGoogle Scholar
  6. 6.
    S.J. Kowalski, J. Szadzińska, Dry. Technol. 32, 1310 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Aghbashlo, M.H. Kianmehr, S. Khani, M. Ghasemi, Int. Agrophys. 23, 313 (2009)Google Scholar
  8. 8.
    E. Demirhan, B. Ozbek, Chem. Eng. Commun. 198, 957 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Jena, H. Das, J. Food Eng. 79, 92 (2007)CrossRefGoogle Scholar
  10. 10.
    O. Corzo, N. Bracho, A. Pereira, A. Vásquez, LWT Food Sci. Technol. 41, 2023 (2008)CrossRefGoogle Scholar
  11. 11.
    I. Alibas, Int. J. Food Eng. 10, 69 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Dadali, B. Ozbek, Int. J. Food Sci. Technol. 43, 1443 (2008)CrossRefGoogle Scholar
  13. 13.
    İ. Doymaz, J. Food Eng. 74, 370 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Başlar, M. Kiliçli, O.S. Toker, O. Sağdiç, M. Arici, Innov. Food Sci. Emerg. Technol. 26, 182 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Natharanakule, W. Kraiwanichkul, S. Soponronnarit, J. Food Eng. 80, 1023 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Konieczny, J. Stangierski, J. Kijowski, Meat Sci. 76, 253 (2007)CrossRefGoogle Scholar
  17. 17.
    T. Ahmat, M. Barka, A.W. Aregba, D. Bruneau, J. Food Process. Preserv. 39, 2581 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Simal, A. Femenia, J.A. Carcel, C. Rossello, J. Sci. Food Agric. 85, 425 (2005)CrossRefGoogle Scholar
  19. 19.
    P. Sa-Adchom, T. Swasdisevi, A. Nathakaranakule, S. Soponronnarit, J. Food Eng. 104, 499 (2011)CrossRefGoogle Scholar
  20. 20.
    O.P. Sobukola, S.O. Olatunde, Food Bioprod. Process. 89, 170 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Vega-Gálvez, A. Ayala-Aponte, E. Notte, L. De La Fuente, R. Lemus-Mondaca, Dry. Technol. 26, 1610 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Heilporn, B. Haut, F. Debaste, F.V.D. Pol, C. Boey, A. Nonclercq, Food Secur. 2, 71 (2010)CrossRefGoogle Scholar
  23. 23.
    D. Jain, P.B. Pathare, J. Food Eng. 78, 1315 (2007)CrossRefGoogle Scholar
  24. 24.
    L.A.A. Pinto, S. Tobinaga, Dry. Technol. 24, 509 (2006)CrossRefGoogle Scholar
  25. 25.
    J.O. Akinneye, I.A. Amoo, O.O. Bakare, Afr. J. Biotechnol. 9, 4369 (2010)Google Scholar
  26. 26.
    H. Darvishi, M. Azadbakht, A. Rezaeiasl, A. Farhang, J. Saudi Soc. Agric. Sci. 12, 121 (2013)Google Scholar
  27. 27.
    Z.H. Duan, L.N. Jiang, J.L. Wang, X.Y. Yu, T. Wang, Food Bioprod. Process. 89, 472 (2011)CrossRefGoogle Scholar
  28. 28.
    AOAC (Association of Official Analytical Chemists), Official Methods of Analysis of AOAC International, 16th edn. (AOAC International, Virginia, 1995)Google Scholar
  29. 29.
    S.M. Henderson, S. Pabis, J. Agric. Eng. Res. 6, 169 (1961)Google Scholar
  30. 30.
    C.Y. Wang, R.P. Singh, ASAE, Paper No:78-6505 (1978)Google Scholar
  31. 31.
    J. Crank, Mathematics of Diffusion (Clarendon Press, Oxford, 1975)Google Scholar
  32. 32.
    L.M. Bal, A. Kar, S. Satya, S.N. Naik, Int. J. Food Sci. Technol. 45, 2321 (2010)CrossRefGoogle Scholar
  33. 33.
    I. Hammouda, D. Mihoubi, Energ. Convers. Manag. 87, 832 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Contini, R. Álvarez, M. O’sullivan, D.P. Dowling, S.Ó. Gargan, F.J. Monahan, Meat Sci. 96, 1171 (2014)CrossRefGoogle Scholar
  35. 35.
    W.L. Mccabe, J.C. Smith, P. Harriot, Unit Operations of Chemical Engineering, 5th edn. (McGraw-Hill Book Company, New York, 1993)Google Scholar
  36. 36.
    L.M. Diamante, P.A. Munro, Solar Energ. 51, 271 (1993)CrossRefGoogle Scholar
  37. 37.
    G. Ruiz-Diaz, J. Martinez-Monzo, P. Fito, A. Chiralt, Innov. Food Sci. Emerg. Technol. 4, 203 (2003)CrossRefGoogle Scholar
  38. 38.
    P.P. Lewicki, J. Food Eng. 36, 81 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations