Advertisement

Research on Chemical Intermediates

, Volume 43, Issue 2, pp 1099–1105 | Cite as

Colorimetric and electrochemical sensing for fluoride anion by ferrocenyl-based imidazole compound with electron donor–acceptor structure

  • Yumei Zhang
  • Xudong Yu
Article

Abstract

In this paper, a new ferrocenylimidazole compound L was designed and synthesized. L could selectively sense a fluoride anion among test anions such as F, AcO, Cl, Br, I and HSO4 , accompanied by obvious color or electrochemical changes. The detection limit in a DMSO solution was calculated as 5.94 × 10−6 M−1. From the Uv–vis, NMR and electrochemical titrations, it was indicated that L and fluoride anions formed a 1:1 complex with hydrogen bonding and anion–π interactions.

Keywords

Anion recognition Supramolecular Fluoride Anion–π interaction 

Notes

Acknowledgments

Yu et al. gratefully acknowledge Prof. Tao Yi in Fudan chemistry for the partial experiment support and research fellowships. This work was supported by the National Natural Science Foundation of China (No. 21301047), Natural Science Foundation of Hebei Province (No. B2014208094).

References

  1. 1.
    R. Martinez-Mannez, F. Sancenon, Chem. Rev. 4419, 103 (2003)Google Scholar
  2. 2.
    M. Cametti, K. Rissanen, Chem. Commun. 2809, 20 (2009)Google Scholar
  3. 3.
    M. Yousuf, N. Ahmed, B. Shirinfar et al., Org. Lett. 2150, 16 (2014)Google Scholar
  4. 4.
    X.D. Yu, Y.J. Li, Y.B. Yin, D.C. Yu, Mater. Sci. Eng., C 1695, 32 (2012)Google Scholar
  5. 5.
    L.M. Salonen, M. Ellermann, F. Diederich et al., Angew. Chem. Int. Ed. 4808, 50 (2011)Google Scholar
  6. 6.
    O. Perraud, V. Robert, H. Gornitzka et al., Angew. Chem. Int. Ed. 504, 51 (2012)Google Scholar
  7. 7.
    N. Ahmed, B. Shirinfar, V.M. Miriyala et al., Supramol. Chem. 478, 27 (2015)Google Scholar
  8. 8.
    A. Tarraga, P. Molina, Inorg. Chem. 7487, 52 (2013)Google Scholar
  9. 9.
    Z. Xu, X. Chen, H.N. Kim, J. Yoon, Chem. Soc. Rev. 127, 39 (2010)Google Scholar
  10. 10.
    C. Caltagirone, P.A. Gale, Chem. Soc. Rev. 520, 38 (2009)Google Scholar
  11. 11.
    X.D. Yu, P. Zhang, Q. Liu, Y. Li, X. Zhen, Y. Zhang, Z. Ma, Mater. Sci. Eng., C 73, 39 (2014)Google Scholar
  12. 12.
    X.D. Yu, P. Zhang, Y. Li, X.L. Zhen, L. Geng, Y. Wang, Z. Ma, Mater. Sci. Eng. C 467, 40 (2014)Google Scholar
  13. 13.
    M.X.D. Yu, H. Lin, Z. Cai, H. Lin, Tetrahedron Lett. 8615, 48 (2007). (Alfonso) Google Scholar
  14. 14.
    S.K. Kim, J.L. Sessler, Chem. Soc. Rev. 3784, 39 (2010)Google Scholar
  15. 15.
    M. Alfonso, A. Tarraga, P. Molina, Inorg. Chem. 7487, 52 (2013)Google Scholar
  16. 16.
    Q. Tan, L. Wang, L. Ma, H. Yu, J. Ding, Q. Liu, A. Xiao, G. Ren, J. Phys. Chem. B 11171, 112 (2008)Google Scholar
  17. 17.
    X. Ming Liu, Q. Zhao, Y. Li, W.O. Song, Y. Li, Z. Chang, X. Bu, Chin. Chem. Lett. 962, 24 (2013)Google Scholar
  18. 18.
    K. Flídrová, M. Tkadlecová, K. Lang, P. Lhoták, Tetrahedron Lett. 678, 53 (2012)Google Scholar
  19. 19.
    D. Lee, H.Y. Lee, K.H. Lee, J. Hong, Chem. Commun. 1188, 13 (2001)Google Scholar
  20. 20.
    M. Zora, A. Kivrak, Y. Kelgokmen, J. Organomet. Chem. 67, 759 (2014)Google Scholar
  21. 21.
    R. Maragani, R. Misra, Tetrahedron Lett. 5399, 39 (2013)Google Scholar
  22. 22.
    B. Shirinfar, N. Ahmed, Y.S. Park et al., J. Am. Chem. Soc. 90, 135 (2013)Google Scholar
  23. 23.
    N. Ahmed, B. Shirinfar II, S. Youn et al., Org. Biomol. Chem. 6407, 11 (2013)Google Scholar
  24. 24.
    A. Frontera, P. Gamez, M. Mascal et al., Angew. Chem. Int. Ed. 9564, 50 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of SciencesHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations