Research on Chemical Intermediates

, Volume 43, Issue 1, pp 481–501 | Cite as

Synthesis and characterisation of neodymium doped-zinc oxide–graphene oxide nanocomposite as a highly efficient photocatalyst for enhanced degradation of indigo carmine in water under simulated solar light

  • Samuel O. B. Oppong
  • William W. Anku
  • Sudheesh K. Shukla
  • Penny P. Govender


A nanocomposite (Nd–ZnO–GO) with enhanced photocatalytic properties was synthesized by co-precipitation method. The structures, morphologies and photocatalytic activities of the nanocomposite were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and ultraviolet–visible spectroscopy. Indigo carmine (IC) dye was used to evaluate the photocatalytic performance of the nanocomposite under simulated solar light. The photocatalytic results indicate that the nanocomposite [Nd–ZnO–GO (0.3 % Nd)] showed good photocatalytic activity and could be considered as a promising photocatalyst for treatment of organic pollutant in water. The high and efficient photocatalytic degradation of IC solution by the nanocomposite [Nd–ZnO–GO (0.3 % Nd)] is attributed to improve absorbance in the visible region and the separation of charge carriers due the combined effect of Nd and GO. Analysis from Total organic carbon (TOC) displayed a higher degree of complete mineralisation of IC (TOC removal of 76 %) which decreases the formation of possible toxic degradation by-products. The stability of Nd–ZnO–GO (0.3 % Nd) nanocomposite caused it to be reused for five times reaching 83.0 % degradation efficiency after the five cycles.


Graphene oxide Neodymium ZnO Indigo carmine Co-precipitation 



The authors will like to acknowledge the financial contributions of the Faculty of Science: University of Johannesburg-South Africa, Centre of Nanomaterials and Science Research: Department of Applied Chemistry, National Research Foundation (TTK14052167682) and Water Research Commission of South Africa towards this work.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Y.N. Tan, C.L. Wong, A.R. Mohamed, An overview on the photocatalytic activity of nano-doped-TiO2 in the degradation of organic pollutants. ISRN Mater Sci 2011, 1–18 (2011)CrossRefGoogle Scholar
  2. 2.
    I. Oller, S. Malato, J.A. Sanchez- Perez, Combination of advanced oxidation process and biological treatments for wastewater decontamination—a review. Sci. Total Environ. 409(20), 4141–4166 (2011)CrossRefGoogle Scholar
  3. 3.
    E.S. Agorku, M.A. Mamo, B.B. Mamba, A.C. Pandey, A.K. Mishra, Cobalt-doped ZnS reduce graphene oxide nanocomposite as an advance photocatalytic material. J. Porous Mater. 22(1), 47–56 (2015)CrossRefGoogle Scholar
  4. 4.
    A.K. Asiagwu, Sorption model for the removal of m-anisidine dye from aqueous solution using beaker’s yeast (Saccharomyces cerevisiae). Int J Res Rev Appl Sci 13, 617–625 (2012)Google Scholar
  5. 5.
    E.S. Beach, R.T. Malecky, R.R. Gil, C.P. Horwitz, T.J. Collins, Fe-TAML/hydrogen peroxide degradation of concentrated solutions of the commercial azo dye tartrazine. Catal Sci Technol 1(3), 437–443 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Haydar, J.A. Aziz, Coagulation–flocculation studies of tannery wastewater using cationic polymers as a replacement of metal salts. Water Sci. Technol. 59(2), 381 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Anjaneyulu, N.S. Chary, D.S.S.D. Raj, Decolourization of industrial effluents—available methods and emerging technologies—a review. Rev Environ Sci Bio/Technol 4, 254–273 (2005)CrossRefGoogle Scholar
  8. 8.
    F. Chen, X. Yang, H.K. Mak, D.W. Chen, Photocatalytic oxidation for antimicrobial control in built environment: a brief literature overview. Build. Environ. 45(8), 1747–1754 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Cho, H. Chung, W. Choi, J. Yoon, Different inactivation behaviours of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbial 71(1), 270–275 (2005)CrossRefGoogle Scholar
  10. 10.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental application of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  11. 11.
    H. Daraei, A. Maleki, A.H. Mahvi, Y. Zandsalimi, L. Alaei, F. Gharibi, Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: operational parameters influence, modeling, and optimization. Desalin Water Treat 52(34–36), 6745–6755 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Qiu, Y. Zheng, K.A. Haralampides, Study on a novel POM-based magnetic photocatalyst: photocatalytic degradation and magnetic separation. Chem. Eng. J. 125(3), 165–176 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Chen, J. Zhou, B. Xu, X. Meng, Preparation of TiO2–BaSO4 composite microparticles and their photocatalytic activity. Chem. Eng. J. 218, 24–31 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Li, L. Chen, Y. Guo, X. Sun, Y. Wei, Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark. Chem. Eng. J. 181, 734–739 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Shao, L. Sun, L. Tang, Z. Chen, C Preparation and characterization of magnetic core–shell ZnFe2O4@ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem. Eng. J. 217, 185–191 (2013)CrossRefGoogle Scholar
  16. 16.
    M.H. Habibi, M. Mardani, Effect of annealing temperature on optical properties of binary zinc tin oxide nanocomposite prepared by sol–gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigation. Spectrochim Acta A Mol Biomol Spectrosc 137, 267–270 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Wang, D. Chen, H. Zhang, J.Z. Zhang, J. Li, Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity. J. Phys. Chem. C 112(24), 8850–8855 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Cho, S. Kim, J.-W. Jang, S.-H. Jung, E. Oh, B.R. Lee, K.-H. Lee, Large-scale fabrication of sub-20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity. J. Phys. Chem. C 113(24), 10452–10458 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, D. Yang, X. Ma, N. Du, J. Wu, D. Que, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. J Phys Chem B 110(2), 827–830 (2006)CrossRefGoogle Scholar
  20. 20.
    L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, W.F. Zhang, Size dependence of gas sensitivity of ZnO nanorods. J. Phys. Chem. C 111(5), 1900–1903 (2007)CrossRefGoogle Scholar
  21. 21.
    J.H. Choy, E.S. Jang, J.H. Won, J.H. Chung, D.J. Jang, Y.W. Kim, Soft solution route to directionally grown ZnO nanorod arrays on Si wafer room-temperature ultraviolet laser. Adv. Mater. 15(22), 1911–1914 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Chen, C. Li, G. Eda, Y. Zhang, W. Lei, M. Chhowalla, W.I. Milne, W.-Q. Deng, Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem. Commun. 47(21), 6084–6086 (2011)CrossRefGoogle Scholar
  23. 23.
    W.I. Park, J.S. Kim, G.-C. Yi, M.H. Bae, H.J. Lee, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 85(21), 5052–5054 (2004)CrossRefGoogle Scholar
  24. 24.
    W.I. Park, J.S. Kim, G.C. Yi, H.J. Lee, ZnO nanorod logic circuits ZnO nanorod logic circuits. Adv. Mater. 17(11), 1393–1397 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Chen, D.M. Bagnall, H.J. Koh, K.T. Park, K. Hiraga, Z. Zhu, T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J. Appl. Phys. 84(7), 3912–3918 (1998)CrossRefGoogle Scholar
  26. 26.
    A.K. Singh, S.S. Multani, S.B. Patil, ZnO nanorods and nanopolypods synthesized using microwave assisted wet chemical and thermal evaporation method. Indian J. Pure Appl. Phys. 49(4), 270–276 (2011)Google Scholar
  27. 27.
    M. Gusatti, J.D. do Rosario, C.E. de Campos, N.C. Kunhen, E.U. de Carvalho, H.G. Riella, A.M. Bernardin, Production and characterization of ZnO nanocrystals obtained by solochemical processing at different temperatures. J. Nanosci. Nanotechnol. 10(7), 4348–4351 (2010)CrossRefGoogle Scholar
  28. 28.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res Nano Res 4(11), 1013–1098 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Yang, L. Ren, C. Zhang, S. Huang, T. Liu, Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Appl Mater Interface 3(7), 2779–2785 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Khatamian, A.A. Khander, B. Divband, M. Haghighi, S. Ebrahimisal, Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. A Chem. 365, 120–127 (2012)CrossRefGoogle Scholar
  31. 31.
    J.G. Li, Y. Wang, Y. Guo, Y. Guo, A high activity photocatalyst of hierarchical 3D flowerlike ZnO microspheres: synthesis, characterization and catalytic activity. J. Colloid Interface Sci. 377(1), 191–196 (2012)CrossRefGoogle Scholar
  32. 32.
    M.H. Habibi, M. Fakhrpor, Preparation of cerium zinc oxide nanocomposite derived by hydrothermal route coated on glass and its application in water treatment. Desalin. Water Treat. 1–7 (2016). doi: 10.1080/19443994.2016.1164080
  33. 33.
    M.H. Habibi, E. Askari, Preparation of a novel zinc zirconate nanocomposite coated on glass for removal of a textile dye (Reactive Brilliant Red X8B) from water. Synth React Inorg Met Org Nano-Met Chem 45(10), 1457–1462 (2015)CrossRefGoogle Scholar
  34. 34.
    C.A. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40(4), 433–440 (2000)CrossRefGoogle Scholar
  35. 35.
    J.H. Choy, H.C. Hee, H. Jung, S.J. Hwang, A novel synthetic route to TiO2—pillard layered titanate with enhanced motion (ESI) available: XRD patterns and crystallographic data for pristine layered caesium titanate and its proton exchanged form, XRD pattern of the anatase TiO2 nansol used as pillaring agent. J. Mater. Chem. 11(9), 2232–2234 (2001)CrossRefGoogle Scholar
  36. 36.
    W. Choi, A. Termin, H.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and change carrier recombination dynamics. J. Phys. Chem. 98(51), 13669–13679 (1994)CrossRefGoogle Scholar
  37. 37.
    E.I. Kapinus, T.I. Vikforova, T.A. Khalyavka, Photocatalytic activity of nanoparticles of metal sulfides in the degradation organic dyes. Theor Exp Chem 42(5), 282–286 (2006)CrossRefGoogle Scholar
  38. 38.
    A. Ishizum, C.M. White, Y. Kanemitsu, Photoluminescence properties of impurity-doped ZnS nanocrystals fabricated by sequential ion implantation: low-dimensinal systems and nanostructures. Physica 26(1), 24–27 (2005)CrossRefGoogle Scholar
  39. 39.
    A. Nezamzadeh-Ejhieh, Z. Banan, Photodegradation of dimethyldisulfide by heterogeneous catalysis using nano CdS and nano CdO embedded on the zeolite A synthesized from waste porcelain. Desalin Water Treat 52(16), 3328–3337 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, M. Toyoda, Preparation of stable anatase-type TiO2 and its photocatalytic performance. Int. J. Inorg. Mater. 3(7), 809–811 (2001)CrossRefGoogle Scholar
  41. 41.
    M.H. Habibi, M. Zendehdel, Synthesis and characterization of titania nanoparticles on the surface of microporous perlite using sol–gel method: influence of titania precursor on characteristics. J. Inorg. Organomet. Polym Mater. 21(3), 634–639 (2011)CrossRefGoogle Scholar
  42. 42.
    U. Siemon, D. Bahnemann, J.J. Testa, D. Rodriguez, M.I. Litte, N. Bruno, Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J Photochem Photobiol A Chem 148, 245–253 (2002)CrossRefGoogle Scholar
  43. 43.
    A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterisation, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207(2), 151–157 (2007)CrossRefGoogle Scholar
  44. 44.
    S.O.B. Oppong, W.W. Anku, S.K. Shukla, E.S. Agorku, P.P. Govender, Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J Sol–Gel Sci Technol (2016). doi: 10.1007/s10971-016-4062-8 Google Scholar
  45. 45.
    O. Yayapo, T. Thongtem, A. Phuruangrat, S. Thongtem, Ultrasonic-assisted synthesis of Nd-doped ZnO for photocatalysis. Mater. Lett. 90, 83–86 (2013)CrossRefGoogle Scholar
  46. 46.
    O. Yayapo, S. Thongtem, A. Phuruangrat, T. Thongtem, Sonochemical synthesis, photocatalysis and photonic properties of 3 % Ce-doped ZnO nanoneedles. Ceramics Int 39, S563–S568 (2013)CrossRefGoogle Scholar
  47. 47.
    O. Yayapo, T. Thongtem, A. Phuruangra, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J Alloys Compd 576, 72–79 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Synthesis and characterisation of europium-doped zinc oxide photocatalyst. J Nanomater 2014, 1–9 (2014)Google Scholar
  49. 49.
    J. Xu, Y. Ao, D. Fu, C. Yuan, A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light induced photocatalytic activity. J. Colloid Interface Sci. 328(2), 447–451 (2008)CrossRefGoogle Scholar
  50. 50.
    M.H. Habibi, M. Zendehdel, Fabrication and characterization of self-assembled multilayer nanostructure titania with high preferential (101) orientation on alumina thin films by layerby-layer dip-coating method, Fabrication and Characterization of Self-Assembled Multilayer Nanostructure Titania with High Preferential (101) Orientation on Alumina Thin Films by Layerby-Layer Dip-Coating Method. Curr Nanosci 6(6), 642–647 (2010)CrossRefGoogle Scholar
  51. 51.
    D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, Photocatalytic degradation for environmental applications: a review. J. Chem. Technol. Biotechnol. 77(1), 102–116 (2001)CrossRefGoogle Scholar
  52. 52.
    M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res. 41(2), 379–386 (2007)CrossRefGoogle Scholar
  53. 53.
    N. Zhang, Y. Zhang, Y.-J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19), 5792–5813 (2012)CrossRefGoogle Scholar
  54. 54.
    Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41(2), 782–796 (2012)CrossRefGoogle Scholar
  55. 55.
    H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3), 2693–2703 (2012)CrossRefGoogle Scholar
  56. 56.
    N.R. Khalid, E. Ahmed, Z. Hong, M. Ahmad, Synthesis and photocatalytic properties of visible light responsive La/TiO2–graphene composites. Appl. Surf. Sci. 263, 254–259 (2012)CrossRefGoogle Scholar
  57. 57.
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011)CrossRefGoogle Scholar
  58. 58.
    Z. Wang, B. Huang, Y. Dai, Y. Liu, X. Zhang, X. Qin, J. Wang, Z. Zheng, H. Cheng, Crystal facets controlled synthesis of graphene@TiO2 nanocomposites by a one-pot hydrothermal process. CrystEngComm 14(5), 1687–1692 (2012)CrossRefGoogle Scholar
  59. 59.
    Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9), 3670–3678 (2011)CrossRefGoogle Scholar
  60. 60.
    F.S. Omar, H. Ming, S.M. Hafiz, L.H. Negee, Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. Int. J. Photoenergy 2014, 1–8 (2014)CrossRefGoogle Scholar
  61. 61.
    Y. Zhu, S. Murali, W. Cal, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties and applications. Adv. Mater. 22(46), 3906–3924 (2010)CrossRefGoogle Scholar
  62. 62.
    Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen, J. Dai, TiO2 nanocrystal grown on graphene as advanced potocatalytic hybrid materials. Nano Sci Res 3(10), 701–705 (2010)CrossRefGoogle Scholar
  63. 63.
    Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y.J. Xu, TiO2–graphene nanocomposite for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from TiO2–carbon composite materials. ACS Nano 4(12), 7033–7314 (2010)CrossRefGoogle Scholar
  64. 64.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 21(21), 2233–2239 (2009)CrossRefGoogle Scholar
  65. 65.
    P. Cheng, J. Qiu, M. Gu, Y. Jin, W. Shangguan, Synthesis of shape-controlled titannia particles from a precursor solution containing urea. Mater. Lett. 58(29), 3751 (2004)CrossRefGoogle Scholar
  66. 66.
    G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Phys. Status Solidi C 3(10), 3577–3581 (2006)CrossRefGoogle Scholar
  67. 67.
    J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21(10), 3415–3421 (2011)CrossRefGoogle Scholar
  68. 68.
    P.G. Ren, D.X. Yan, X. Ji, T. Chen, Z.M. Li, Temperature dependance of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22(5), 055705 (2011)CrossRefGoogle Scholar
  69. 69.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hoffmann, B.K. Mayer, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80(11), 1909–1911 (2002)CrossRefGoogle Scholar
  70. 70.
    N. Lepot, M.K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, F.D. Mullens, Synthesis of ZnO nanorods from aqueous solution. Mater. Lett. 61(13), 2624–2627 (2007)CrossRefGoogle Scholar
  71. 71.
    I.C. Madsen, N.V. Scarlett, L.M. Cranswick, T. Lwin, Outcoms of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: samples 1a to 1h. J. Appl. Crystallogr. 34(4), 409–426 (2001)CrossRefGoogle Scholar
  72. 72.
    C. Chen, B. Yu, P. Liu, J.F. Liu, L. Wang, Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res 12(4), 420–425 (2011)Google Scholar
  73. 73.
    S.-Y. Pung, W.-P. Lee, A. Aziz, Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int J Inorg Chem 2012, 1–9 (2012)Google Scholar
  74. 74.
    S.V. Kumar, N.M. Huang, N. Yusoff, H.N. Lim, High performance magnetically separable graphene/zinc oxide nanocomposite. Mater. Lett. 93, 411–414 (2013)CrossRefGoogle Scholar
  75. 75.
    S.M. Kumaran, R. Gopalakrishnan, Structure, optical and photoluminescence properties of Zn1−x Cex (x = 0, 0.05 and 0.1) nanoparticles by sol–gel method annealed under Ar atmosphere. J Sol–Gel Sci Technol 62(2), 193–200 (2012)CrossRefGoogle Scholar
  76. 76.
    J.Y. Li, H. Li, Physical and electrical performance of vapour–solid grown ZnO straight nanowires. Nanoscale Res. Lett. 4(2), 165–168 (2009)CrossRefGoogle Scholar
  77. 77.
    A.C. Ferrai, Raman spectroscope of grahene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effect. Solid State Commun. 143(1–2), 47–57 (2007)CrossRefGoogle Scholar
  78. 78.
    S. Stankovich, D.A. Dikin, R.D. Pinner, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  79. 79.
    J. Yang, X. Zhao, H. Fan, L. Yang, Y. Zhang, X. Li, Blue-shift of UV emission in ZnO/graphene composites. J. Alloys Compd. 2013(556), 1–5 (2013)Google Scholar
  80. 80.
    J.J. Xu, Y.H. Ao, D.G. Fu, C.W. Yuan, Study on photocatalytic performance and degradation kinetics of X-3B with lanthanide-modified titanium dioxide under solar and UV illumination. J. Hazard. Mater. 164(2–3), 762–768 (2009)CrossRefGoogle Scholar
  81. 81.
    G.M. An, W.H. Ma, Z.Y. Sun, Z.M. Liu, B.X. Han, S.D. Miaso, Z. Miaso, K. Ding, Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45(9), 1795–1801 (2007)CrossRefGoogle Scholar
  82. 82.
    Y. Zhan, N. Zhan, Z.R. Tang, Y.J. Xu, Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 6(11), 9777–9789 (2012)CrossRefGoogle Scholar
  83. 83.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2009)CrossRefGoogle Scholar
  84. 84.
    Y. Wu, J. Zhang, L. Xiao, F. Chen, Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl. Surf. Sci. 256(13), 4260–4268 (2010)CrossRefGoogle Scholar
  85. 85.
    H.B. Russell, A.N. Andriotis, M. Menon, J.B. Jasinski, A. Martinez-Garcia, M.K. Sunkara, Direct band gap gallium antimony phosphide (GaSbxP1−x) alloys. Sci Rep 6 (2016)Google Scholar
  86. 86.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1967)CrossRefGoogle Scholar
  87. 87.
    E.A. Davis, N. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductor. Philos Mag 22(179), 0903–0922 (1970)CrossRefGoogle Scholar
  88. 88.
    A.T. Kuvareg, R.W. Krause, B.B. Mamba, Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J. Phys. Chem. C 115(45), 22110–22120 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations