Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 12, pp 8039–8053 | Cite as

Structural and textural features of TiO2/SAPO-34 nanocomposite prepared by the sol–gel method

  • Salima Bellatreche
  • Abdelkrim Hasnaoui
  • Bouhadjar BoukoussaEmail author
  • Jaime García-Aguilar
  • Ángel Berenguer-Murcia
  • Diego Cazorla-Amoros
  • Abdelkader Bengueddach
Article

Abstract

This paper focuses on the synthesis of nanocomposite materials, TiO2/SAPO-34, using the sol–gel method, which involves preparing a mixture between as-synthesized or calcined SAPO-34 zeolite and TiO2 gel under hydrothermal crystallization and then calcining it at 400 °C for the formation of the TiO2 anatase phase. The structural and textural features of the obtained materials were determined by various physico-chemical techniques such as thermogravimetric analysis, X-ray diffraction, scanning electronic microscopy, nitrogen sorption at 77 K, energy dispersive X-ray analysis and ultraviolet–visible spectrometry. The DRX results showed that calcination at 400 °C of the mixture between the calcined SAPO-34 and TiO2 gel led to the collapse of the original framework of zeolite, but formed the anatase TiO2 in a nano-spherical morphology; however, the use of as-synthesized SAPO-34 supports provides a mixture phase between SAPO-34 and TiO2 anatase after calcination. The photocatalytic properties of the SAPO-34/TiO2 and TiO2-type materials were tested for the removal of methylene blue (MB) dye. The MB degradation proved to increase as a function of contact time, catalyst mass and the initial concentration of MB.

Keywords

TiO2 SAPO-34 TiO2/zeolite Sol–gel preparation Methylene blue Photocatalysis 

Notes

Acknowledgments

The authors thank Generalitat Valenciana (PROMETEOII/2014/010) for financial support. The authors also thank Prof. Rachida HAMACHA (University of Oran 1) for his technical assistance.

References

  1. 1.
    S. Ananthakumar, J. Ramkumar, S. Moorthy-Babu, Renew. Sustain. Energy Rev. 57, 1307–1321 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Mohini, N. Lakshminarasimhan, Mater. Res. Bull. 76, 370–375 (2016)CrossRefGoogle Scholar
  3. 3.
    Yuan Chunmiao, Paul R. Amyotte, M.N. Hossain, C. Li, J. Hazard. Mater. 274, 322–330 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Hofer, D. Penner, J. Eur. Ceram. Soc. 31, 2887–2896 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Singh, I.W. Kim, B.C. Sin, S.K. Woo, S.H. Hyunc, K.D. Mandal, Y. Lee, Powder Technol. 280, 256–265 (2015)CrossRefGoogle Scholar
  6. 6.
    C.M. Malengreauxa, S.L. Pirarda, J.R. Bartlettb, B. Heinrichs, Chem. Eng. J. 245, 180–190 (2014)CrossRefGoogle Scholar
  7. 7.
    A.O. Kondrakov, A.N. Ignatev, F.H. Frimmel, S. Bräsec, H. Horn, A.I. Revelsky, Appl. Catal. B 160–161, 106–114 (2014)CrossRefGoogle Scholar
  8. 8.
    Z.-B. Qin, L. Tan, Z.-Q. Liu, S. Chen, J.-H. Qin, J.-J. Tang, N. Li, Adv. Powder Technol. 27, 299–304 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Sood, S.K. Mehta, A.S.K. Sinha, S.K. Kansal, Chem. Eng. J. 290, 45–52 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Wang, L. Ma, M. Gan, T. Zhou, X. Sun, W. Dai, H. Wang, S. Wang, Compos. B Eng. 92, 405–412 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. T-T, S.Z. Heris, M. Moradi, M. Kahani, Renew. Sustain. Energy Rev. 58, 1318–1326 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Bet-moushoul, Y. Mansourpanah, Kh Farhadi, M. Tabatabaei, Chem. Eng. J. 283, 29–46 (2016)CrossRefGoogle Scholar
  13. 13.
    L.B. Arruda, C.M. Santos, M.O. Orlandi, W.H. Schreiner, P.N. Lisboa-Filho, Ceram. Int. 41, 2884–2891 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Motlak, N.A.M. Barakat, M.S. Akhtar, A.G. El-Deen, M. Obaid, C.S. Kim, K.A. Khalil, A.A. Almajid, Chem. Eng. J. 268, 153–161 (2015)CrossRefGoogle Scholar
  15. 15.
    W. Alamgir, S. Khan, A.H. Ahmad, Naqvi. Mater. Lett. 133, 28–31 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Wang, D. Ren, S. Xia, Y. Zhang, J. Zhao, J. Hazard. Mater. 169, 926–932 (2009)CrossRefGoogle Scholar
  17. 17.
    C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, Dyes Pigments. 76, 817–824 (2008)CrossRefGoogle Scholar
  18. 18.
    M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691–8697 (2016)CrossRefGoogle Scholar
  19. 19.
    M.M. Momeni, Y. Ghayeb, Ceram. Int. 42, 7014–7022 (2016)CrossRefGoogle Scholar
  20. 20.
    Xu Song, Hu Yun, Mengmeng Zheng, Chaohai Wei, Appl. Catal. B 182, 587–597 (2016)CrossRefGoogle Scholar
  21. 21.
    S.A. Bakar, C. Ribeiro, Appl. Surf. Sci. 377, 121–133 (2016)CrossRefGoogle Scholar
  22. 22.
    M.V. Landau, L. Vradman, X. Wang, L. Titelman, Microporous Mesoporous Mater. 78, 117–129 (2005)CrossRefGoogle Scholar
  23. 23.
    Y. Gazal, C. Dublanche-Tixier, C. Chazelas, M. Colas, P. Carles, P. Tristant, Thin Solid Films 600, 43–52 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Sun, L. Qiao, S. Sun, G. Wang, J. Hazard. Mater. 155, 312–319 (2008)CrossRefGoogle Scholar
  25. 25.
    U.G. Akpan, B.H. Hameed, Appl. Catal. A 375, 1–11 (2010)CrossRefGoogle Scholar
  26. 26.
    N. Pronina, D. Klauson, A. Moiseev, J. Deubener, M. Krichevskaya, Appl. Catal. B 178, 117–123 (2015)CrossRefGoogle Scholar
  27. 27.
    I. Pavlovska, K. Malnieks, G. Mezinskis, L. Bidermanis, M. Karpe, Surf. Coat. Technol. 258, 206–210 (2014)CrossRefGoogle Scholar
  28. 28.
    H. Toiserkani, Prog. Org. Coat. 88, 17–22 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Rajendran, V. Senthil Kumar, K. Anitha-Rani, Optik-Int. J. Light Electron Optics 125, 1993–1996 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Lafjah, F. Djafri, A. Bengueddach, N. Keller, V. Keller, J. Hazard. Mater. 186, 1218–1225 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, J. Hazard. Mater. 258–259, 19–26 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Gomez, C.L. Marchena, M.S. Renzini, L. Pizzio, L. Pierella, Appl. Catal. B 162, 167–173 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Takeuchi, M. Hidaka, M. Anpo, J. Hazard. Mater. 237–238, 133–139 (2012)CrossRefGoogle Scholar
  34. 34.
    F.F. de Brites-Nóbrega, A.N.B. Polo, A.M. Benedetti, M.M.D. Leão, V. Slusarski-Santana, N.R.C. Fernandes-Machado, J. Hazard. Mater. 263, 61–66 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemöller, Appl. Catal. B 166–167, 45–55 (2015)CrossRefGoogle Scholar
  36. 36.
    Q. Sun, X. Hu, S. Zheng, Z. Sun, S. Liu, H. Li, Powder Technol. 274, 88–97 (2015)CrossRefGoogle Scholar
  37. 37.
    V.A. Drebushchak, S.N. Dementiev, Y.V. Seryotkin, J. Therm. Anal. Calorim. 107, 1293–1299 (2012)CrossRefGoogle Scholar
  38. 38.
    R. Arletti, E. Mazzucato, G. Vezzalini, Am. Mineral. 91, 628–634 (2006)CrossRefGoogle Scholar
  39. 39.
    R. Szostak. Molecular Sieves-Principles of Synthesis and Identification, Van Nostr and Reinhold, New York (1989)Google Scholar
  40. 40.
    J. Ma, Z. Si, D. Weng, X. Wu, Y. Ma, Chem. Eng. J. 267, 191–200 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Sedighi, J. Towfighi, Fuel 153, 382–392 (2015)CrossRefGoogle Scholar
  42. 42.
    M. Masoudi-Nejad, S. Fatemi, J. Ind. Eng. Chem. 20, 4045–4053 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Gong, C. Wang, C. Zeng, L. Zhang, Microporous Mesoporous Mater. 221, 128–136 (2016)CrossRefGoogle Scholar
  44. 44.
    A.M. Prakash, S. Unnikrishnan, J. Chem. Soc., Faraday Trans. 90, 229 (1994)CrossRefGoogle Scholar
  45. 45.
    R. Velmurugan, B. Krishnakumar, R. Kumar, M. Swaminathan, Arab. J. Chem. 5, 447–452 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Suárez, M. Yates, P. Avila, J. Blanco, J Catal Today. 105, 499–506 (2005)CrossRefGoogle Scholar
  47. 47.
    T. Fjermestad, S. Svelle, O. Swang, J. Phys. Chem. C 117, 13442–13451 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Buchholz, W. Wang, A. Arnold, M. Xu, M. Hunger, Microporous Mesoporous Mater. 57, 157–168 (2003)CrossRefGoogle Scholar
  49. 49.
    M. Briend, R. Vomscheid, M. Peltre, P. Man, D. Barthomeuf, J. Phys. Chem. 99, 8270–8276 (1995)CrossRefGoogle Scholar
  50. 50.
    C. Wang, M. Yang, P. Tian, X. Shutao, Y. Yang, D. Wang, Y. Yuan, Z. Liu, J. Mater. Chem. A 3, 5608–5616 (2015)CrossRefGoogle Scholar
  51. 51.
    D. Wang, P. Tian, D. Fan, M. Yang, B. Gao, Y. Qiao, C. Wang, Z. Liu, J. Colloid Interface Sci. 445, 119–126 (2015)CrossRefGoogle Scholar
  52. 52.
    F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids (Academic, San Diego, 1999)Google Scholar
  53. 53.
    L.B. Reutergardh, M. Iangphasuk, Chemosphere 35, 585–596 (1997)CrossRefGoogle Scholar
  54. 54.
    S. Senthilkumaar, K. Porkodi, R. Gomathi, A. Geetha-Maheswari, N. Manonmani, Dyes Pigm. 69, 22–30 (2006)CrossRefGoogle Scholar
  55. 55.
    H. Huang, D.Y.C. Leung, P.C.W. Kwong, J. Xiong, L. Zhang, Catal. Today 201, 189–194 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Salima Bellatreche
    • 1
  • Abdelkrim Hasnaoui
    • 1
  • Bouhadjar Boukoussa
    • 1
    • 2
    Email author
  • Jaime García-Aguilar
    • 3
  • Ángel Berenguer-Murcia
    • 3
  • Diego Cazorla-Amoros
    • 3
  • Abdelkader Bengueddach
    • 1
  1. 1.Laboratoire de Chimie des Matériaux L.C.MUniversité d’Oran1 Ahmed BenbellaOranAlgeria
  2. 2.Département de Génie des Matériaux, Faculté de ChimieUniversité des Sciences et de la Technologie Mohamed BoudiafOranAlgeria
  3. 3.Inorganic Chemistry Department and Materials Science InstituteAlicante UniversityAlicanteSpain

Personalised recommendations