Research on Chemical Intermediates

, Volume 42, Issue 10, pp 7513–7532 | Cite as

In situ ultrasonic measurements: a powerful tool to control the synthesis of zeolites from coal fly ash

  • Erich HumsEmail author
  • Hasan Baser
  • Wilhelm Schwieger


An in situ ultrasonic diagnostic technique was applied to monitoring the hydrothermal synthesis of zeolite A and X of clear solution extracted from alkaline fused class F coal fly ash. In this context, kinetic evaluations based on in situ ultrasonic diagnostic data displayed an important approach to study the synthesis process. The impact on nucleation and crystal growth was demonstrated by variation of a few relevant parameters such as reaction temperature, amount of water, Na2O and ageing time, including templated colloidal synthesis mixtures as model solution. To complement the kinetic analysis, ex situ techniques such as ICP, X-ray diffraction, scanning electron microscopy and dynamic light scattering were used to investigate liquid phase and reaction products extracted from the reaction mixture during the synthesis.


In situ Ultrasound Coal fly ash Colloidal synthesis Kinetics Zeolite A, X Sodalite 



This work was conducted at the University of Erlangen-Nürnberg, Germany, concerning some parts as a supplement to the PhD thesis of N. Musyoka. The author would like to thank Prof. W. Schwieger for providing the ultrasonic device and DAAD and the German Research Foundation (DFG) for funding. Thanks are also addressed to H. Baser to reflect parts of the results of his PhD thesis. We are also grateful to R. Müller for ICP analysis an gradually acknowledge L. Petrik from the University of the Western Cape, South Africa, for providing the coal fly ash from Eskom used in this study.

Supplementary material

11164_2016_2550_MOESM1_ESM.doc (322 kb)
Fig. 1: XRD patterns of zeolite A obatined at 80, 90 and 94 °C after 360 min using unaged clear solution of fused fly ash., Figure 2: REM image of zeolite A with typical cubic morphology synthesized from templated synthesis mixture exemplarily demonstrated at 95 °C (molar ratio 0.4 Na2O:10 SiO2:1.6 Al2O3:16 (TMA)2O:650 H2O)., Figure 3: XRD patterns of commercial zeolite X and of the synthesized products obtained from clear solution subjected to hydrothermal crystallization after 1 min at 80 °C, after 600 min at 90 °C and after 500 min at 94 °C (slight impurities: S = Sodalite, P = zeolite P) (DOC 322 kb)


  1. 1.
    S.S. Bukhari, J. Behin, H. Kazemian, S. Rohani, Fuel 140, 250–266 (2015)CrossRefGoogle Scholar
  2. 2.
    R.S. Blissett, N.A. Rowson, Fuel 97, 1–23 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Wang, H. Wu, J. Hazard. Mater. 136(3), 482–501 (2006)CrossRefGoogle Scholar
  4. 4.
    L. Ding, H. Yang, P. Rahimi, O. Omotoso, W. Friesen, C. Fairbridge, Y. Shi, S. Ng, Microporous Mesoporous Mater. 130, 303–308 (2010)Google Scholar
  5. 5.
    A. Derkowski, W. Franus, E. Beran, A. Czímerová, Powder Technol. 166, 47–54 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Hums, A. Inayat, W. Schwieger, in Presentation at the 18th International Zeolite Conference, 2016, Rio de Janeiro, Brazil (accepted)Google Scholar
  7. 7.
    N. Pienack, W. Bensch, Angew. Chem. Int. Ed. 50, 2014–2034 (2011)CrossRefGoogle Scholar
  8. 8.
    G. Artioli, R. Grizzetti, L. Carotenntol, C. Piccolo, C. Coletta, B. Lignori, R. Aiello, P. Frontera, Stud. Surf. Sci. Catal. 142, 45–52 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Shi, M.W. Anderson, S.W. Carr, Chem. Mater. 8, 369–375 (1996)CrossRefGoogle Scholar
  10. 10.
    Z.P. Miladinović, J. Zakrewska, B.T. Kovačević, J.M. Miladinović, Microporous Mesoporous Mater. 195, 131–142 (2014)CrossRefGoogle Scholar
  11. 11.
    Z.P. Miladinović, J. Zakrewska, B.T. Kovačević, G. Bačić, Mater. Chem. Phys. 104, 384–389 (2007)CrossRefGoogle Scholar
  12. 12.
    P. Shama, J. Yeo, M.H. Han, C.H. Cho, RSC Adv. 2, 7809–7823 (2012)CrossRefGoogle Scholar
  13. 13.
    M.W. Anderson, J.R. Agger, N. Hanif, O. Terasaki, Microporous Mesoporous Mater. 48, 1–9 (2001)CrossRefGoogle Scholar
  14. 14.
    R. Herrmann, W. Schwieger, O. Scharf, C. Stenzel, H. Toufar, M. Schmachtl, B. Ziberi, W. Grill, Microporous Mesoporous Mater. 80, 1–9 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Schwieger, press release: Kristalle aus dem Rührkessel (Neues Verfahren der Züchtung von Zeolithen) University of Erlangen-Nürnberg, Germany, 03.04.2003 www. Scholar
  16. 16.
    H. H. Baser, PhD Thesis (2013) In situ Diagnostik von Zeolithbildungsprozessen auf Basis der Messung von Utraschalldämpfung und-geschwindigkeit, Institute of Chemical Reaction Engineering, University of Erlangen - Nürnberg, Germany.Google Scholar
  17. 17.
    N.M. Musyoka, L. Petrick, E. Hums, H. Baser, W. Schwieger, Catal. Today 190, 38–46 (2012)CrossRefGoogle Scholar
  18. 18.
    C.S. Cundy, P.A. Cox, Microporous Mesoporous Mater. 82, 1–78 (2005)CrossRefGoogle Scholar
  19. 19.
    E. Hums, N.M. Musyoka, H. Baser, A. Inayat, W. Schwieger, Res. Chem. Intermed. 41(7), 4311–4326 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Kosanović, T.A. Jelić, J. Bronić, D. Kraslj, B. Subotić, Microporous Mesoporous Mater. 137, 72–82 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Bosnar, J. Bronić, Ð. Brlek, B. Subotić, Microporous Mesoporous Mater. 142, 389–397 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Bosnar, T. Antonić-Jelić, J. Bronić, I. Krznarić, B. Subotić, J. Cryst. Growth 267, 270–282 (2004)CrossRefGoogle Scholar
  23. 23.
    R.W. Thompson, M.J. Huber, J. Cryst. Growth 56, 711–722 (1982)CrossRefGoogle Scholar
  24. 24.
    C.-S. Yang, J.M. Mora-Fonz, C.R. Catow, J. Phys. Chem. C 117, 24796–24803 (2013)CrossRefGoogle Scholar
  25. 25.
    H. Baser, J. Selvam, R. Ofili, W. Schwieger in 40th Anniversary of International Zeolite Conference, 2007, pp. 480–486Google Scholar
  26. 26.
    G.J. Myatt, P.M. Budd, C. Price, F. Hollway, S.W. Carr, Zeolites 14, 190–197 (1994)CrossRefGoogle Scholar
  27. 27.
    S.P. Zhdanov, N.N. Samulevich, in Proceedings of the 5th International Conference on Zeolites, 1980, ed. by L.V.C. Rees, Heyden, London, pp. 75–84Google Scholar
  28. 28.
    S.P. Zhdanov, S.S. Khvoshchev, N.N. Feokistova, Synthetic Zeolites-Vol. I-Crystallisation (Gordon and Breach, New York, 1990)Google Scholar
  29. 29.
    S.P. Zhdanov, in Molecular Sieve Zeolites-1, ACS Adv. Chem. Ser. 101, Am. Chem. Soc., 1971 ed. by R.F. Gould, Washington, DC, Cap. 2. pp. 20–43Google Scholar
  30. 30.
    R.W. Thompson, in Modelling of Structure and Reactivity in Zeolites, ed. by C.R.A. Catlow (Academic Press, London, 1992), pp. 231–255Google Scholar
  31. 31.
    W.H. Chen, H.C. Hu, T.Y. Lee, Chem. Eng. Sci. 48, 3683–3691 (1993)CrossRefGoogle Scholar
  32. 32.
    V. Nikolakis, D.G. Vlacho, M. Tsapatsis, Microporous Mesoporous Mater. 21, 337–346 (1998)CrossRefGoogle Scholar
  33. 33.
    P.C. Hohenberg, B. Halperin, Rev. Mod. Phys. 49, 435–479 (1977)CrossRefGoogle Scholar
  34. 34.
    M.J. Avrami, J. Chem. Phys. 7, 1103–1112 (1939)CrossRefGoogle Scholar
  35. 35.
    M.J. Avrami, J. Chem. Phys. 8, 212–224 (1940)CrossRefGoogle Scholar
  36. 36.
    M.J. Avrami, J. Chem. Phys. 9, 177–184 (1941)CrossRefGoogle Scholar
  37. 37.
    C.R. Erofeyev, Dokl. Acad. Sci. URSS 52, 511–514 (1946)Google Scholar
  38. 38.
    G.T. Kerr, J. Phys. Chem. 70(4), 1047–1050 (1966)CrossRefGoogle Scholar
  39. 39.
    J. Ciric, J. Colloid Interface Sci. 28, 315–323 (1968)CrossRefGoogle Scholar
  40. 40.
    A. Culfaz, L.B. Sand, Adv. Chem. Ser. 121, 140–151 (1973)CrossRefGoogle Scholar
  41. 41.
    W. Schwieger, W. Heyer, K.-H. Bergk, Z. Anorg. Allg. Chem. 559, 191–200 (1988)CrossRefGoogle Scholar
  42. 42.
    I. Krzarić, T. Antonić, B. Subotić, V. Babić-Ivančić, Thermochim. Acta 317, 73–84 (1998)CrossRefGoogle Scholar
  43. 43.
    R.I. Walton, D. O’Hare, J. Phys. Chem. B 105, 91–96 (2001)CrossRefGoogle Scholar
  44. 44.
    A. Umemura, P. Cubillas, M.W. Anderson, J.R. Agger, Stud. Surf. Sci. Catal. 174, Part A, 705–708 (2008)Google Scholar
  45. 45.
    P. Cubillas, S.M. Stevens, N. Blake, A. Umemura, C.B. Chong, O. Terasaki, J. Phys. Chem. C 115, 12567–12574 (2011)CrossRefGoogle Scholar
  46. 46.
    P. Cubillas, M.W. Anderson, Synthesis mechanism: crystal growth and nucleation, in Zeolites and Catalysis, Synthesis, Reactions and Applications, vol. 1, ed. by J. Čejka, A. Corma, S. Zones (Wiley, Weinheim, 2010), pp. 1–55CrossRefGoogle Scholar
  47. 47.
    S. Mintova, N.H. Olson, J. Senker, T. Bein, Angew. Chem. Int. Ed. 41, 2558–2561 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Consulting Environmental CatalysisErlangenGermany
  2. 2.Institute of Chemical Reaction EngineeringUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations