Research on Chemical Intermediates

, Volume 42, Issue 9, pp 7065–7084 | Cite as

Enhancement of photocatalytic properties of TiO2 for NO photo-oxidation by optimized sol–gel synthesis

  • E. Luévano-Hipólito
  • A. Martínez de la Cruz


TiO2 samples were prepared by the sol–gel method applying a factorial design in order to improve the photocatalytic properties of the semiconductor oxide for the nitric oxide (NO) photo-oxidation reaction. The temperature of calcination and the amount of alcohol and acid used in the course of the sol–gel reaction were selected as critical experimental variables. As the products of the factorial design, 27 TiO2 samples were obtained and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and adsorption–desorption N2 isotherms. The photocatalytic activity of the TiO2 samples was evaluated in the NO photo-oxidation reaction under UV irradiation. The conversion degree of NO reached by each sample was associated with its physicochemical properties, finding a stronger dependence with the temperature of calcination and morphology of the samples. Different photocatalytic reaction parameters were modified such as mass of photocatalyst, irradiance, flow rate of gas, and relative humidity in order to evaluate their effect in the constants of velocity and adsorption. The TiO2 sample with the highest photocatalytic activity was exposed under different experimental conditions to evaluate its selectivity for the formation of innocuous nitrate ions as final product of the NO photo-oxidation reaction.


Heterogeneous photocatalysis TiO2 NOx Air pollution 



We wish to thank to the CONACYT for its invaluable support through the Project 167018.


  1. 1.
    J.Z. Bloh, A. Follia, D.E. Macphee, RSC Adv. 4, 45726–45734 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Ângelo, L. Andrade, L.M. Madeira, A. Mendes, J. Environ. Manag. 129, 522–539 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Lasek, Y. Yu, J.C.S. Wu, J. Photochem. Photobiol., C 14, 29–52 (2013)CrossRefGoogle Scholar
  4. 4.
    S.W. Verbruggen, J. Photochem. Photobiol. C Photochem. Rev. 24, 64–82 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Fritz, V. Pitchon, Appl. Catal. B 13, 1–25 (1997)CrossRefGoogle Scholar
  6. 6.
    Q.L. Yu, H.J.H. Brouwers, Appl. Catal. B 99, 58–65 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Hu, X. Song, S. Jiang, C. Wei, Chem. Eng. J. 274, 102–112 (2015)CrossRefGoogle Scholar
  8. 8.
    D. Xia, L. Hu, C. He, W. Pan, T. Yang, Y. Yang, D. Shu, Chem. Eng. J. 279, 929–938 (2015)CrossRefGoogle Scholar
  9. 9.
    F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol. 49, 12432–12440 (2015)CrossRefGoogle Scholar
  10. 10.
    Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.K. Ho, Scientific Reports 5, Article number: 14643 (2015)Google Scholar
  11. 11.
    R. Amadelli, L. Samiolo, M. Borsa, M. Bellardita, L. Palmisano, Catal. Today 206, 19–25 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Huang, I. Wang, Y. Lin, Y. Tseng, C. Lu, J. Mol. Catal. A: Chem. 316, 163–170 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Devahasdin, C. Fan, J.K. Li, D.H. Chen, J. Photochem, Photobiol. A 156, 161–170 (2003)CrossRefGoogle Scholar
  14. 14.
    F.L. Toma, G. Bertrand, D. Klein, C. Coddet, Environ. Chem. Lett. 2, 117–121 (2004)CrossRefGoogle Scholar
  15. 15.
    T. Ibusuki, K. Takeuchi, J. Mol. Catal. 88, 93–102 (1994)CrossRefGoogle Scholar
  16. 16.
    C.H. Ao, S.C. Lee, J. Photochem. Photobiol., A 161, 131–140 (2004)CrossRefGoogle Scholar
  17. 17.
    B.N. Shelimov, N.N. Tolkachev, O.P. Tkachenko, G.N. Baeva, K.V. Klementiev, A.Y. Stakheev, V.B. Kazansky, J. Photochem. Photobiol., A 195, 81–88 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Aparicio, A. Itianu, L.C. Klein, Sol-Gel Processing for Conventional and Alternative Energy (Springer, New York, 2012), pp. 217–230CrossRefGoogle Scholar
  19. 19.
    M.C. Hidalgo, M. Aguilar, M. Maicu, J.A. Navío, G. Colón, Catal. Today 129, 50–58 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Valencia, J.M. Marín, G. Restrepo, Open Mater. Sci. J. 4, 9–14 (2010)Google Scholar
  21. 21.
    M.A. Santana-Aranda, M. Morán-Pineda, J. Hernández, S. Castillo, Superf. Vacío 18, 46–49 (2005)Google Scholar
  22. 22.
    J.B. Condon, Surface Area and Porosity Determinations by Physisorption (Elsevier, Amsterdam, 2006), pp. 8–9Google Scholar
  23. 23.
    L.L. Hench, J.K. West, Chem. Rev. 90, 33–72 (1990)CrossRefGoogle Scholar
  24. 24.
    L. Yang, Z. Liu, J. Shi, H. Hu, W. Shangguan, Catal. Today 126, 359–368 (2007)CrossRefGoogle Scholar
  25. 25.
    Y. Ku, C. Ma, Y. Shen, Appl. Catal. B 34, 181–190 (2001)CrossRefGoogle Scholar
  26. 26.
    A.A. Assadi, A. Bouzaza, S. Merabet, D. Wolbert, Chem. Eng. J. 258, 119–127 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 107, 1028–1035 (2003)CrossRefGoogle Scholar
  28. 28.
    H. Dylla, M.M. Hassan, L.J. Thibodeaux, Transp. Res. Board Annu. Meet. 93, 1–17 (2014)Google Scholar
  29. 29.
    S. Brosillon, L. Lhomme, C. Vallet, A. Bouzaza, D. Wolbert, Appl. Catal. B 78, 232–241 (2008)CrossRefGoogle Scholar
  30. 30.
    P. Zhang, J. Liu, J. Photochem. Photobiol., A 167, 87–94 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • E. Luévano-Hipólito
    • 1
  • A. Martínez de la Cruz
    • 1
  1. 1.CIIDIT, Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations