Research on Chemical Intermediates

, Volume 42, Issue 9, pp 6893–6905 | Cite as

Two routes to 1,2-cyclohexanediol catalyzed by zeolites under solvent-free condition

  • Wenkang Lei
  • Zaikun Wu
  • Jie Ma
  • Ping Yu
  • Yunbai LuoEmail author


Two routes to 1,2-cyclohexanediol were studied. Specifically: (a) the hydrolysis of cyclohexene oxide and (b) the direct dihydroxylation of cyclohexene with aqueous hydrogen peroxide. Both reactions were carried out with zeolites as catalysts under solvent-free conditions, aiming to establish green routes for the synthesis of 1,2-cyclohexanediol. In the first route, H-Beta and H-ZSM-5 zeolites were used as catalysts, respectively. According to the results, H-ZSM-5 was a suitable catalyst for the hydrolysis of cyclohexene oxide. A 88.6 % yield of 1,2-cyclohexanediol could be obtained at a 96.2 % conversion of cyclohexene oxide under mild conditions, and the catalyst could be reused for three times. Compared with H-ZSM-5, H-Beta gave a much lower selectivity (63 %), although it was more active. In the second route, Ti-Beta zeolites with three different Ti loadings prepared via a simple two-step strategy were characterized and used. The results indicated that it was the framework Ti species which was responsible for the catalytic activity. The resultant Ti-Beta-3 % could give a 90.2 % cyclohexene conversion at a 66.2 % selectivity of 1,2-cyclohexanediol.


1, 2-Cyclohexanediol Hydrolysis Dihydroxylation Zeolites Solvent-free 


  1. 1.
    A.V. Narsaiah, B.V.S. Reddy, K. Premalatha, S.S. Reddy, J.S. Yadav, Catal. Lett. 131, 480 (2009)CrossRefGoogle Scholar
  2. 2.
    J.M. Ready, E.N. Jacobsen, J. Am. Chem. Soc. 123, 2687 (2001)CrossRefGoogle Scholar
  3. 3.
    L. Emmanuel, T.M.A. Shaikh, A. Sudalai, Org. Lett. 7, 5071 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Bergstad, S.Y. Jonsson, J.E. Backvall, J. Am. Chem. Soc. 121, 10424 (1999)CrossRefGoogle Scholar
  5. 5.
    H. Cavdar, N. Saracoglu, Tetrahedron 65, 985 (2009)CrossRefGoogle Scholar
  6. 6.
    P. Salehi, M.M. Khodaei, M.A. Zolfigol, A. Keyvan, Synth. Commun. 33, 3041 (2003)CrossRefGoogle Scholar
  7. 7.
    B. Tang, W.L. Dai, X.M. Sun, G.J. Wu, L.D. Li, N.J. Guan, M. Hunger, Chin. J. Catal. 36, 801 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Wang, Y.T. Cui, Z.B. Xu, J. Qu, J. Org. Chem. 73, 2270 (2008)CrossRefGoogle Scholar
  9. 9.
    H.Y. Tian, Y.D. Zhang, Z.X. Wang, Spec. Petrochem. 26, 37 (2009)Google Scholar
  10. 10.
    Q.S. Yang, X. Yang, Y.J. Wang, H.O. Wang, Q.Y. Cheng, Res. Chem. Intermed. 38, 2277 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Tang, W.L. Dai, G.J. Wu, N.J. Guan, L.D. Li, M. Hunger, ACS Catal. 4, 2801 (2014)CrossRefGoogle Scholar
  12. 12.
    R.H. Fan, X.L. Hou, Org. Biomol. Chem. 1, 1565 (2014)CrossRefGoogle Scholar
  13. 13.
    F. Cavani, J.H. Teles, ChemSusChem 2, 508 (2009)CrossRefGoogle Scholar
  14. 14.
    V. Nardello, J.-M. Aubry, D.E. De Vos, R. Neumann, W. Adam, R. Zhang, J.E. ten Elshof, P.T. Witte, P.L. Alsters, J. Mol. Catal. A 251, 185 (2006)CrossRefGoogle Scholar
  15. 15.
    I.W.C.E. Arends, R.A. Sheldon, Appl. Catal. A 212, 175 (2001)CrossRefGoogle Scholar
  16. 16.
    A.P. Zhang, S. Gao, Y. Lv, Z.W. Xi, Res. Chem. Int. 35, 563 (2009)CrossRefGoogle Scholar
  17. 17.
    C. Antonetti, A.M.R. Galletti, P. Accorinti, S. Alini, P. Babini, K. Raabova, E. Rozhko, A. Caldarelli, P. Righi, F. Cavani, P. Concepcion, Appl. Catal. A 466, 21 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Corma, M.A. Camblor, P. Esteve, A. Martinez, J. Perez-Pariente, J. Catal. 145, 151 (1994)CrossRefGoogle Scholar
  19. 19.
    Q.H. Xia, X. Chen, T. Tatsumi, J. Mol. Catal. A 176, 179 (2001)CrossRefGoogle Scholar
  20. 20.
    A. Corma, M.T. Navarro, J. Perez-Pariente, J. Chem. Soc. Chem. Commun. 2, 147 (1994)CrossRefGoogle Scholar
  21. 21.
    T. Tatsumi, K.A. Noyano, N. Igarashi, J. Chem. Soc. Chem. Commun. 3, 325 (1998)CrossRefGoogle Scholar
  22. 22.
    T. De Baerdemaeker, B. Steenackers, D. De Vos, Chem. Commun. 49, 7474 (2013)CrossRefGoogle Scholar
  23. 23.
    M.A. Camblor, A. Corma, A. Martínez, J. Pérez-Pariente, J. Chem. Soc. Chem. Commun. 8, 589 (1992)CrossRefGoogle Scholar
  24. 24.
    N. Jappar, Q.H. Xia, T. Tatsumi, J. Catal. 180, 132 (1998)CrossRefGoogle Scholar
  25. 25.
    T. Blasco, M.A. Camblor, A. Corma, P. Esteve, A. Martínez, C. Prieto, S. Valencia, Chem. Commun. 20, 2367 (1996)CrossRefGoogle Scholar
  26. 26.
    J.P. Nogier, Y. Millot, P.P. Man, T. Shishido, M. Che, S. Dzwigaj, J. Phys. Chem. C 113, 4885 (2009)CrossRefGoogle Scholar
  27. 27.
    J.P. Nogier, Y. Millot, P.P. Man, C. Méthivier, M. Che, S. Dzwigaj, Catal. Lett. 130, 588 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Tang, W.L. Dai, X.M. Sun, N.J. Guan, L. Li, M. Hunger, Green Chem. 16, 2281 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Sarma, N. Borthakur, A. Goswami, Tetrahedron Lett. 48, 6776 (2007)CrossRefGoogle Scholar
  30. 30.
    R. Otomo, T. Yokoi, J.N. Kondo, T. Tatsumi, Appl. Catal. A 470, 318 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Otomo, T. Tatsumi, T. Yokoi, Catal. Sci. Technol. 5, 4001 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Dijkmans, M. Dusselier, D. Gabriëls, K. Houthoofd, P.C.M.M. Magusin, S. Huang, Y. Pontikes, M. Trekels, A. Vantomme, L. Giebeler, S. Oswald, B.F. Sels, ACS Catal. 5, 928 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Dzwigaj, M.J. Peltre, P. Massiani, A. Davidson, M. Che, T. Sen, S. Sivasanker, J. Chem. Soc. Chem. Commun. 1, 87 (1998)CrossRefGoogle Scholar
  34. 34.
    S. Dzwigaj, M. Matsuoka, M. Anpo, M. Che, J. Phys. Chem. B 104, 6012 (2000)CrossRefGoogle Scholar
  35. 35.
    W.C.R.Z. Hua, T.G. Ge, X.X. Zhou, L.S. Chen, Y. Zhu, J.L. Shi, Chin. J. Catal. 36, 906 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wenkang Lei
    • 1
  • Zaikun Wu
    • 1
  • Jie Ma
    • 1
  • Ping Yu
    • 1
  • Yunbai Luo
    • 1
    Email author
  1. 1.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations