Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 6, pp 6125–6141 | Cite as

Kinetics and mechanism of the 1,3-dipolar cycloaddition of nitrilimine with thione-containing dipolarophile: a detailed DFT study

  • Atiye Bazian
  • S. Ali BeyramabadiEmail author
  • Abolghasem Davoodnia
  • Mehdi Pordel
  • Mohammad Reza Bozorgmehr
Article

Abstract

The 1,3-dipolar cycloadditions are extensively used for the preparation of five-membered heterocycles. A mechanism consisting of two pathways was proposed for production of two regioisomers of the 1,3-dipolar cycloaddition of the nitrilimine and a thione-containing dipolarophile. Here, we have investigated the kinetics and mechanism of this reaction using density functional theory. Two possible mechanisms of A and B have been investigated in which Cl is present in the structure of the nitrilimine reactant in the case of mechanism A, while it is absent in the case of mechanism B. Mechanism A, involving Cl, has higher barrier energy than mechanism B, and so is rejected. Mechanism B involves two pathways, I and II, which lead to two regioisomers with different percentages in the products. Both of the pathways are one-step. Pathway II involves the attack of the nitrogen atom of the nitrilimine on the carbon atom of the C=S group of the dipolarophile. The product of pathway II is kinetically and thermodynamically a more favorable product than its regioisomer produced in the other pathway. The obtained results are in agreement with the experimental results.

Keywords

1,3-Dipolar cycloadditions Regioisomer DFT calculations PCM Kinetics Mechanism 

Supplementary material

11164_2016_2449_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 43 kb)

References

  1. 1.
    R. Huisgen, M. Seidel, G. Wallbillich, H. Knupfer, Tetrahedron 17, 3 (1962)CrossRefGoogle Scholar
  2. 2.
    R. Huisgen, Angew. Chem. Int. Ed. 2, 565 (1963)CrossRefGoogle Scholar
  3. 3.
    R. Huisgen, W. Fliegl, W. Kolbeck, Chem. Ber. 116, 3027 (1983)CrossRefGoogle Scholar
  4. 4.
    G. Molteni, A. Ponti, Tetrahedron Asymmetry 15, 3711 (2004)CrossRefGoogle Scholar
  5. 5.
    G. Molteni, A. Ponti, Tetrahedron Asymmetry 19, 1381 (2008)CrossRefGoogle Scholar
  6. 6.
    G. Molteni, Tetrahedron Asymmetry 15, 1077 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Molteni, Heterocycles 65, 2513 (2005)CrossRefGoogle Scholar
  8. 8.
    A.S. Shawali, M.A. Abdallah, M.A.N. Mosselhi, M.S. Elewa, J. Heterocycl. Chem. 44, 285 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Agocs, A. Benyei, L. Somogyi, P. Herczegh, Tetrahedron Asymmetry 9, 3359 (1998)CrossRefGoogle Scholar
  10. 10.
    G. Broggini, L. Garanti, G. Molteni, G. Zecchi, Heterocycles 53, 831 (2000)CrossRefGoogle Scholar
  11. 11.
    H.N. Dogan, A. Duran, S. Rollas, G. Sener, M.K. Uysal, D. Gulen, Bioorg. Med. Chem. 10, 2893 (2002)CrossRefGoogle Scholar
  12. 12.
    N. Solak, S. Rollas, Arkivoc xii, 173 (2006)Google Scholar
  13. 13.
    H.N. Hafez, M.I. Hegab, I.S.A. Farag, A.B.A. El-Gazzar, Bioorg. Med. Chem. Lett. 18, 4538 (2008)CrossRefGoogle Scholar
  14. 14.
    A.R. Jalilian, S. Sattari, M. Bineshmarvasti, A. Shafiee, M. Daneshtalab, Arch. Pharm. Weinheim 333, 347 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Shafiee, M. Mohamadpour, F. Abtahi, A. Khoyi, J. Pharm. Sci. 70, 510 (1981)CrossRefGoogle Scholar
  16. 16.
    M.A. Hosny, T.H. El Sayed, E.A. El Sawi, Eur. J. Chem. 9, 1276 (2012)Google Scholar
  17. 17.
    D. Guo, Z. Wang, Z. Fan, H. Zhao, W. Zhang, J. Cheng, J. Yang, Q. Wu, Y. Zhang, Q. Fan, Chin. J. Chem. 30, 2522 (2012)CrossRefGoogle Scholar
  18. 18.
    E.W. Thomas, E.E. Nishizawa, D.C. Zimmermann, D.J. Williams, J. Med. Chem. 28, 442 (1985)CrossRefGoogle Scholar
  19. 19.
    W. Benchouk, S.M. Mekelleche, Theochem 862, 1 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Ponti, G. Molteni, J. Org. Chem. 66, 5252 (2001)CrossRefGoogle Scholar
  21. 21.
    F. Moeinpour, M. Bakavoli, A. Davoodnia, A. Morsali, J. Tetrahedron Comput. Chem. 11(1), 99 (2012)CrossRefGoogle Scholar
  22. 22.
    F. Moeinpour, Chin. J. Chem. Phys. 23(2), 165 (2010)CrossRefGoogle Scholar
  23. 23.
    L.R. Domingo, M.J. Aurell, M. Arno, J.A. Saez, J. Mol. Struct. Theochem 811, 125 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Zghab, B. Trimeche, D. Touboul, H.B. Jannet, C. R. Chim. 17, 171 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  26. 26.
    M.J. Frisch et al., Gaussian 03, Revision C.02 (Gaussian Inc., Pittsburgh, PA, 2003)Google Scholar
  27. 27.
    J. Tomasi, R. Cammi, J. Comput. Chem. 16, 1449 (1995)CrossRefGoogle Scholar
  28. 28.
    S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali, Organometallics 27, 72 (2008)CrossRefGoogle Scholar
  29. 29.
    H. Wang, Res. Chem. Intermed. 38, 2175 (2012)CrossRefGoogle Scholar
  30. 30.
    S.H. Vahidi, A. Morsali, S.A. Beyramabadi, Comput. Theor. Chem. 994, 41 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Najafi Ardabili, A. Morsali, S.A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41, 5389 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Eshtiagh-Hosseini, S.A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, M.A. Naseri, J. Mol. Struct. 1072, 187 (2014)CrossRefGoogle Scholar
  33. 33.
  34. 34.
    A.A. Altaf, A. Shahzad, Z. Gul, S.A. Khan, A. Badshah, M.N. Tahir, Z.I. Zafar, E. Khan, Eur. J. Chem. 1, 221 (2010)CrossRefGoogle Scholar
  35. 35.
    H.S. Dong, B. Wang, J. Chem. Cryst. 35, 61 (2005)CrossRefGoogle Scholar
  36. 36.
    R. Reyes-Martínez, R. Mejia-Huicochea, J.A. Guerrero-Alvarez, H. Höpfl, H. Tlahuext, ARKIVOC 19, 19–30 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Atiye Bazian
    • 1
  • S. Ali Beyramabadi
    • 1
    Email author
  • Abolghasem Davoodnia
    • 1
  • Mehdi Pordel
    • 1
  • Mohammad Reza Bozorgmehr
    • 1
  1. 1.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations