Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 6, pp 6079–6087 | Cite as

Cu(NO3)2-catalyzed nitrodecarboxylation of α,β-unsaturated acids: facile synthesis of (E)-nitroolefins under additive-free conditions

  • Zai-Gang LuoEmail author
  • Feng Xu
  • Yu-Yu Fang
  • Peng Liu
  • Xue-Mei Xu
  • Cheng-Tao Feng
  • Zhong Li
  • Jie HeEmail author
Article

Abstract

An additive-free, facile, efficient, and ecofriendly protocol for synthesis of (E)-nitroolefins via nitrodecarboxylation of α,β-unsaturated acids has been developed. Cu(NO3)2 was used as both nitrating agent and catalyst. Furthermore, the presented methodology offers several advantages such as easily accessible and stable substrates, inexpensive catalyst, high to excellent yield, short reaction time, and simple posttreatment procedure.

Graphical Abstract

Keywords

Nitrodecarboxylation α,β-Unsaturated acids Cu(NO3)2 (E)-Nitroolefins 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21102003) and Scientific Research Foundation for the Introduction of Talent of Anhui University of Science and Technology.

Supplementary material

11164_2016_2446_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2312 kb)

References

  1. 1.
    M.A. Reddy, N. Jain, D. Yada, C. Kishore, V.J. Reddy, P.S. Reddy, A. Addlagatta, S.V. Kalivendi, B. Sreedhar, J. Med. Chem. 54, 6751 (2011)CrossRefGoogle Scholar
  2. 2.
    L.Q. Lu, J.R. Chen, W.J. Xiao, Acc. Chem. Res. 45, 1278 (2012)CrossRefGoogle Scholar
  3. 3.
    C.B. Tripathi, S. Kayal, S. Mukherjee, Org. Lett. 14, 3296 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.K. Liu, M. Nappi, E. Arceo, S. Vera, P. Melchiorre, J. Am. Chem. Soc. 133, 15212 (2011)CrossRefGoogle Scholar
  5. 5.
    D.K. Nair, S.M. Mobin, I.N.N. Namboothiri, Org. Lett. 14, 4580 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Tamura, A. Kamimura, N. Ono, Synthesis 6, 423 (1991)CrossRefGoogle Scholar
  7. 7.
    S. Fioravanti, L. Pellacani, P.A. Tardella, M.C. Vergari, Org. Lett. 10, 1449 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Maity, S. Manna, S. Rana, T. Naveen, A. Mallick, D. Maiti, J. Am. Chem. Soc. 135, 3355 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Naveen, S. Maity, U. Sharma, D. Maiti, J. Org. Chem. 78, 5949 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Maity, T. Naveen, U. Sharma, D. Maiti, Org. Lett. 15, 3384 (2013)CrossRefGoogle Scholar
  11. 11.
    U. Dutta, S. Maity, R. Kancherla, D. Maiti, Org. Lett. 16, 6302 (2014)CrossRefGoogle Scholar
  12. 12.
    G.B. Yan, A.J. Borah, L.G. Wang, Org. Biomol. Chem. 12, 6049 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Natarajan, R. Chaudhary, P. Venugopalan, J. Org. Chem. 80, 10498 (2015)CrossRefGoogle Scholar
  14. 14.
    A.J. Borah, G.B. Yan, Org. Biomol. Chem. 13, 8094 (2015)CrossRefGoogle Scholar
  15. 15.
    J.P. Das, P. Sinha, S. Roy, Org. Lett. 4, 3055 (2002)CrossRefGoogle Scholar
  16. 16.
    A.S. Rao, P.V. Srinivas, K.S. Babu, J.M. Rao, Tetrahedron Lett. 46, 8141 (2005)CrossRefGoogle Scholar
  17. 17.
    K.C. Rajanna, K. Ramesh, S. Ramgopal, S. Shylaja, P.G. Reddy, P.K. Saiprakash, Green Sustain. Chem. 1, 132 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Manna, S. Jana, T. Saboo, A. Maji, D. Maiti, Chem. Commun. 49, 5286 (2013)CrossRefGoogle Scholar
  19. 19.
    B.V. Rokade, K.R. Prabhu, Org. Biomol. Chem. 11, 6713 (2013)CrossRefGoogle Scholar
  20. 20.
    Diganta. Baruah, Pallab. Pahari, Dilip. Konwar, Tetrahedron Lett. 56, 2418 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Zhang, P. Hu, J. Zhou, G. Wu, W.P. Su, Org. Lett. 15, 1718 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of Chemical EngineeringAnhui University of Science & TechnologyHuainanChina
  2. 2.Guang Zhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina

Personalised recommendations