Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 6, pp 5367–5385 | Cite as

Macroporous zirconia particles prepared by subcritical water in batch and flow processes

  • Siti Machmudah
  • Okky Putri Prastuti
  • Widiyastuti
  • Sugeng Winardi
  • Wahyudiono
  • Hideki Kanda
  • Motonobu Goto
Article

Abstract

Porous zirconia particles were synthesized through a low-temperature hydrothermal synthesis process. Under hydrothermal conditions, water can control the direction of crystal growth, morphology, particle size, and size distribution because thermodynamics and transport properties can be controlled by pressure and temperature. In a batch process, the hydrothermal synthesis was conducted at 200–300 °C and 30 MPa with an SUS-304 tube as the reactor. At the same reaction pressure, experiments were also performed for a flow process with temperatures of 180–200 °C. The synthesized products were calcined and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed that the macroporous zirconia particles that were formed had pore diameters around 419 nm. The XRD pattern indicated that the products were composed of zirconium oxide particles with monoclinic, tetragonal, and cubic structures.

Keywords

Zirconia Macroporous Synthesis Composite Hydrothermal 

Notes

Acknowledgments

This research was partly supported by a grant from the Directorate General of Higher Education, Ministry of Education and Art of Indonesia through a research Grant Desentralisasi—Penelitian Unggulan Perguruan Tinggi contract no. 016457.8/IT2.7/PN.01.00/2014. This research was also supported by a grant from the Precursory Research for Embryonic Science and Technology Program of the Japan Science and Technology Agency (JST) and in collaboration with the Department of Chemical Engineering, Sepuluh Nopember Institute of Technology (ITS), Indonesia and the Department of Chemical Engineering, Nagoya University, Japan.

References

  1. 1.
    M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104, 4063 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Dercz, K. Prusik, L. Pajak, J. Achiev. Mater. Manuf. Eng. 18, 259 (2006)Google Scholar
  3. 3.
    K. Vernieuwe, P. Lommens, J.C. Martins, F. Van Den Broeck, I. Van Driessche, K. De Buysser, Materials 6, 4082 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Tyagi, K. Sidhpuria, B. Shaik, R.V. Jasra, Ind. Eng. Chem. Res. 45, 8643 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Herrera, N. Montoya, A. Domenech-Carbo, J. Alarcon, Phys. Chem. Chem. Phys. 15, 9312 (2013)CrossRefGoogle Scholar
  6. 6.
    A.K. Singh, U.T. Nakate, Sci. World J. (2014). doi: 10.1155/2014/349457 Google Scholar
  7. 7.
    T. Boningari, R. Koirala, P.G. Smirniotis, Appl. Catal. B: Environ. 127, 255 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Ryu, H.S. Kil, J.H. Song, D.Y. Lim, S.B. Cho, Powder Technol. 221, 228 (2012)CrossRefGoogle Scholar
  9. 9.
    A.C. Pierre, Introduction to sol–gel processing (Springer, USA, 2002), pp. 6–8Google Scholar
  10. 10.
    V. Bounor-Legare, P. Cassagnau, Prog. Polym. Sci. 39, 1473 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Kalia, Y. Haldorai, Organic–inorganic hybrid nanomaterials (Springer, Switzerland, 2015), p. 7Google Scholar
  12. 12.
    C. Kaya, J.Y. He, X. Gu, E.G. Butler, J. Microporous Mesoporous Mat. 54, 37 (2002)CrossRefGoogle Scholar
  13. 13.
    H. Hayashi, Y. Hakuta, Materials 3, 3794 (2010)CrossRefGoogle Scholar
  14. 14.
    T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019 (1992)CrossRefGoogle Scholar
  15. 15.
    Z. Fang, Rapid production of micro- and nano-particles using supercritical water (Springer, Germany, 2010), pp. 11–25Google Scholar
  16. 16.
    H. Hayashi, A. Ueda, A. Suino, K. Hiro, Y. Hakuta, J. Solid State Chem. 182, 2985 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Taguchi, S. Takami, T. Adschiri, T. Nakane, K. Sato, T. Naka, Cryst. Eng. Comm. 14, 2117 (2012)CrossRefGoogle Scholar
  18. 18.
    Z. Shu, X. Jiao, D. Chen, Cryst. Eng. Comm. 15, 4288 (2013)CrossRefGoogle Scholar
  19. 19.
    D.S.S. Padovini, D.S.L. Pontes, C.J. Dalmaschio, F.M. Pontes, E. Longo, RSC Adv. 4, 38484 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Rouquerolt, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)Google Scholar
  21. 21.
    H. Wu, P. Badrinarayanan, M.R. Kessler, J. Am. Ceram. Soc. 95, 3643 (2012)CrossRefGoogle Scholar
  22. 22.
    P.S. Liu, G.F. Chen, Porous materials: processing and applications (Elsevier, Cambridge, MA, 2014), pp. 113–182Google Scholar
  23. 23.
    S.A. Johnson, P.J. Ollivier, T.E. Mallouk, Science 283, 5404 (1999)Google Scholar
  24. 24.
    H. Ehrlich, P. Simon, M. Motylenko, M. Wysokowski, V.V. Bazhenov, R. Galli, A.L. Stelling, D. Stawski, M. Ilan, H. Stocker, B. Abendroth, R. Born, T. Jesionowski, K.J. Kurzydlowski, D.C. Meyer, J. Mater. Chem. B 1, 5092 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Wysokowski, M. Motylenko, V.V. Bazhenov, D. Stawski, I. Petrenko, A. Ehrlich, T. Behm, Z. Kljajic, A.L. Stelling, T. Jesionowski, H. Ehrlich, Front. Mater. Sci. 7, 248 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Tavakoli, M. Sohrabi, A. Kargari, Chem. Pap. 61, 151 (2007)CrossRefGoogle Scholar
  27. 27.
    W. Li, H. Huang, H. Li, W. Zhang, H. Liu, Langmuir 24, 8358 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Kierys, R. Zaleski, W. Buda, S. Pikus, M. Dziadosz, J. Goworek, Colloid Polym. Sci. 291, 1463 (2013)CrossRefGoogle Scholar
  29. 29.
    I.M. Hung, D.T. Hung, K.Z. Fung, M.H. Hon, J. Eur. Ceram. Soc. 26, 2627 (2006)CrossRefGoogle Scholar
  30. 30.
    N. Tangchupong, W. Khaodee, B. Jongsomjit, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat, Fuel Process. Technol. 91, 121 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Gaber, M.A. Abdel-Rahim, A.Y. Abdel-Latief, M.N. Abdel-Salam, Int. J. Electrochem. Sci. 9, 81 (2014)Google Scholar
  32. 32.
    H. Hobbs, S. Briddon, E. Lester, Green Chem. 11, 484 (2009)CrossRefGoogle Scholar
  33. 33.
    Z. Li, Y. Liu, W. Kwapinski, J.J. Leahy, Mater. Chem. Phys. 145, 82 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Sakka, F. Tang, H. Fudouzi, T. Uchikoshi, Sci. Technol. Adv. Mater. 6, 915 (2005)CrossRefGoogle Scholar
  35. 35.
    M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, J. Eur. Ceram. Soc. 32, 4249 (2012)CrossRefGoogle Scholar
  36. 36.
    Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Prog. Nat. Sci.: Mater. Int. 23, 351 (2013)CrossRefGoogle Scholar
  37. 37.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  38. 38.
    H.J. Noh, D.S. Seo, H. Kim, J.K. Lee, Mater. Lett. 57, 2425 (2003)CrossRefGoogle Scholar
  39. 39.
    R.F. Egerton, Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM (Springer, New York, 2005), pp. 11–16CrossRefGoogle Scholar
  40. 40.
    R. Espinoza-Gonzalez, E. Mosquera, I. Moglia, R. Villarroel, V.M. Fuenzalida, Ceram. Int. 40, 15577 (2014)CrossRefGoogle Scholar
  41. 41.
    Z.Y. Yuan, T.Z. Ren, A. Vantomme, B.L. Su, Chem. Mater. 16, 5096 (2004)CrossRefGoogle Scholar
  42. 42.
    L.H. Chen, S.T. Xu, X.Y. Li, G. Tian, Y. Li, J.C. Rooke, G.S. Zhu, S.L. Qiu, Y.X. Wei, X.Y. Yang, Z.M. Liu, B.L. Su, J. Colloid Interf. Sci. 377, 368 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Park, M.K. Seo, Interface science and composites (Elsevier Ltd., USA, 2011), pp. 70–77Google Scholar
  44. 44.
    C. Lecoeur, B. Daffos, R. Lin, L. Divay, P. Le Barny, M. PhamThi, P.L. Taberna, P. Simon, Mater. Renew. Sustain Energy 2, 13 (2013)CrossRefGoogle Scholar
  45. 45.
    M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle technology handbook, 1st edn. (Elsevier, Amsterdam, 2007), pp. 270–272Google Scholar
  46. 46.
    Y. Sawaki, K. Matsuo, M. Kishimoto, J. Ceram. Soc. Jpn. 112, S17 (2004)Google Scholar
  47. 47.
    E. Tani, M. Yoshimura, S. Somiya, J. Ceram. Soc. 66, 11 (1983)CrossRefGoogle Scholar
  48. 48.
    G. Stefanic, S. Music, K. Molcanov, J. Alloy. Compd. 387, 300 (2005)CrossRefGoogle Scholar
  49. 49.
    H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982)CrossRefGoogle Scholar
  50. 50.
    S. Pabisch, B. Feichtenschlager, G. Kickelbick, H. Peterlik, Chem. Phys. Lett. 521, 91 (2012)CrossRefGoogle Scholar
  51. 51.
    K.H. Stern, Metallurgical and ceramic protective coatings (Chapman & Hall, London, 1996), pp. 203–204CrossRefGoogle Scholar
  52. 52.
    H. Toraya, M. Yoshimura, S. Somiya, J. Am. Ceram. Soc. 67, C119 (1984)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Siti Machmudah
    • 1
  • Okky Putri Prastuti
    • 1
  • Widiyastuti
    • 1
  • Sugeng Winardi
    • 1
  • Wahyudiono
    • 2
  • Hideki Kanda
    • 2
  • Motonobu Goto
    • 2
  1. 1.Department of Chemical EngineeringSepuluh Nopember Institute of TechnologySurabayaIndonesia
  2. 2.Department of Chemical EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations