Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 5, pp 4403–4415 | Cite as

NiSO4·6H2O as a new, efficient, and reusable catalyst for the α-aminophosphonates synthesis under mild and eco-friendly conditions

  • Samia Guezane Lakoud
  • Mounia Merabet-Khelassi
  • Louisa Aribi-Zouioueche
Article

Abstract

Nickel (II) sulfate hexahydrate is used for the first time as an efficient catalyst for the one-pot synthesis of α-aminophosphonates by three-component condensation reaction of aromatic aldehyde, primary amine, and diethylphosphite under mild and eco-friendly conditions. NiSO4·6H2O was used with a catalytic amount of 5 mol% at room temperature, without solvent in the reaction. A series of the desired α-aminophosphonates are obtained after a simple work-up procedure, with excellent yields (up to 92 %) within a short reaction time of 10–20 min in all cases. This heterogeneous catalyst was reused several times with the same activity. The present approach offers the advantages of a clean reaction, simple methodology, easy purification, and economic availability of the catalyst.

Graphical Abstract

Keywords

Nickel (II) sulfate hexahydrate α-Aminophosphonates Solvent-free Catalyst reuse Green protocol 

Notes

Acknowledgments

The Algerian Ministry of Education and Scientific Research (FNR 2000 and PNR) is gratefully acknowledged for financial support of this work. Professor Olivier Riant (IMCN/MOST, Université Catholique de Louvain, Belgium) and F-Z BELKACEMI are acknowledged for carrying out the NMR analysis.

References

  1. 1.
    M.C. Allen, W. Fuhrer, B. Tuck, R. Wade, J.M. Wood, J. Med. Chem. 32, 1652 (1989)CrossRefGoogle Scholar
  2. 2.
    D.W. Allen, E.C. Anderton, C. Bradley, L.E. Shiel, Polym. Degrad. Stab. 47, 67 (1995)CrossRefGoogle Scholar
  3. 3.
    P.T. Anastas, N. Eghbali, Chem. Soc. Rev. 39, 301 (2010)CrossRefGoogle Scholar
  4. 4.
    P.T. Anastas, P.T. Li, Water as a green solvent (Wiley, Hoboken, 2010)Google Scholar
  5. 5.
    P.T. Anastas, J.C. Warner, Green chemistry: theory and practice (Oxford University Press, New York, 1998)Google Scholar
  6. 6.
    F.R. Atherton, C.H. Hassal, R.W. Lambert, J. Med. Chem. 30, 1603 (1987)CrossRefGoogle Scholar
  7. 7.
    S. Bhagat, A.K. Chakraborti, J. Org. Chem. 73, 6029 (2008)CrossRefGoogle Scholar
  8. 8.
    A.K. Bhattacharya, T. Kaur, Synlett 5, 745 (2007)CrossRefGoogle Scholar
  9. 9.
    R.A. Cherkasov, V.I. Galkin, Russ. Chem. Rev. 67, 857 (1998)CrossRefGoogle Scholar
  10. 10.
    S.D. Dindulkar, M.V. Reddy, Y.T. Jeong, Catal. Commun. 17, 114 (2012)CrossRefGoogle Scholar
  11. 11.
    E. Fields, J. Am. Chem. Soc. 74, 1528 (1952)CrossRefGoogle Scholar
  12. 12.
    A. Heydari, M. Zarei, R. Alijanianzadeh, H. Tavakol, Tetrahedron Lett. 42, 3629 (2001)CrossRefGoogle Scholar
  13. 13.
    M. Hosseini-Sarvari, Tetrahedron 64, 5459 (2008)CrossRefGoogle Scholar
  14. 14.
    A.A. Jafari, M. Nazarpour, M. Abdollahi-Alibeik, Heteroat. Chem. 21, 6 (2010)CrossRefGoogle Scholar
  15. 15.
    M.I. Kabachnik, T.Y. Medved, Dokl. Akad. Nauk SSSR 83, 689 (1952)Google Scholar
  16. 16.
    B. Kaboudin, E. Jafari, Synlett 12, 1837 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Kafarski, B. Lejczak, Curr. Med. Chem Anti-Cancer Agent 1, 301 (2001)CrossRefGoogle Scholar
  18. 18.
    Z. Karimi-Jaberi, H. Zare, M. Amiri, N. Sadeghi, Chin. Chem. Lett. 22, 559 (2011)CrossRefGoogle Scholar
  19. 19.
    G. Keglevich, E. Bálint, Molecules 17, 12821 (2012)CrossRefGoogle Scholar
  20. 20.
    S.N. Kirti, B.S. Bapurao, S.S. Murlidhar, Ultrason. Sonochem. 17, 760 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Lashat, H. Kunz, Synthesis. 1, 90 (1992)CrossRefGoogle Scholar
  22. 22.
    N. Li, X. Wang, R. Qiu, X. Xu, J. Chen, X. Zhang, S. Chen, S. Yin, Catal. Commun. 43, 184 (2014)CrossRefGoogle Scholar
  23. 23.
    S.D. Lombaert, L. Blanchard, J. Tan, Y. Sakane, C. Berry, R.D. Ghai, Bioorg. Med. Chem. Lett. 5, 145 (1995)CrossRefGoogle Scholar
  24. 24.
    L. Maier, Phosphorus, Sulfur Silicon Relat. Elem. 53, 43 (1990)CrossRefGoogle Scholar
  25. 25.
    L. Maier, H. Spoerri, Phosphorus. Sulfur Silicon Relat. Elem. 61, 69 (1991)CrossRefGoogle Scholar
  26. 26.
    D. Miliszkiewicz, P. Wieczorek, B. Lejczak, E. Kowalik, P. Kafarski, Pestic. Sci. 34, 349 (1992)CrossRefGoogle Scholar
  27. 27.
    S.D. Mitragotri, D.M. Pore, U.V. Desai, P.P. Wadgaonkar, Catal. Commun. 9, 2008 (1822)Google Scholar
  28. 28.
    M.V. Reddy, S.D. Dindulkar, Y.T. Jeong, Tetrahedron Lett. 52, 4764 (2011)CrossRefGoogle Scholar
  29. 29.
    Z. Rezaei, H. Firouzabadi, N. Iranpoor, A. Ghaderi, M.R. Jafari, A.A. Jafari, H.R. Zare, Eur. J. Med. Chem. 44, 4266 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Rozenfeld, X. Iturrioz, M. Okada, B. Maigret, C. Lorens-Cortes, Biochemistry 42, 14785 (2003)CrossRefGoogle Scholar
  31. 31.
    H. Sharghi, S. Ebrahim Pourmoghaddam, M.M. Doroodmand, Tetrahedron 69, 4708 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Tang, L. Wanga, W. Wang, L. Zhang, W. Shengying, D. Mao, J. Fluor. Chem. 132, 102 (2011)CrossRefGoogle Scholar
  33. 33.
    B.M. Trost, Angew. Chem. Int. Ed. 107, 285 (1995)CrossRefGoogle Scholar
  34. 34.
    B.M. Trost, Angew. Chem. Int. Ed. 34, 259 (1995)CrossRefGoogle Scholar
  35. 35.
    B.M. Trost, Science. 254, 1471 (1991)CrossRefGoogle Scholar
  36. 36.
    H. Wang, T. Deng, C. Cai, J. Fluor. Chem. 168, 144 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Yamanaka, T.J. Hirata, J. Org. Chem. 74, 3266 (2009)CrossRefGoogle Scholar
  38. 38.
    N.S. Zefirov, E.D. Matveeva, ARKIVOC 1(11), 1–17 (2008)Google Scholar
  39. 39.
    J. Zon, Pol. J. Chem. 55, 643 (1981)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Samia Guezane Lakoud
    • 1
  • Mounia Merabet-Khelassi
    • 1
  • Louisa Aribi-Zouioueche
    • 1
  1. 1.Eco-compatible Asymmetric Catalysis Laboratory (LCAE)Badji Mokhtar Annaba-UniversityAnnabaAlgeria

Personalised recommendations