Research on Chemical Intermediates

, Volume 42, Issue 4, pp 3257–3281 | Cite as

Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater

  • N. M. Mubarak
  • J. N. SahuEmail author
  • E. C. Abdullah
  • N. S. Jayakumar
  • P. Ganesan


Removal of toxic metals is one of the biggest challenges in ensuring safe water for all as well as protecting the environment. Novel multi-walled carbon nanotubes (MCNTs) have been successfully synthesised by microwave techniques and improved to be an outstanding adsorbent for the removal of Zn(II) from wastewater. The adsorption of Zn(II) was studied and optimized as a function of pH, initial Zn(II) concentration, MCNT dosage, agitation speed, and adsorption time. In order to investigate the dynamic behavior of MCNTs as an adsorbent, the kinetic data were modeled using pseudo-first-order and second-order kinetic models. Different thermodynamic parameters, viz., ∆H°, ∆S° and ∆G° have also been evaluated and it has been found that the adsorption was feasible, spontaneous and endothermic in nature. Statistical analysis reveals that the optimum conditions for the highest removal (99.9 %) of Zn(II) are at pH 10, a MCNT dosage 0.05 g, an agitation speed and time of 160 rpm and 60 min, respectively, with an initial concentration of 10 mg/L. On the basis of the Langmuir model, q m was calculated to be 90.9 mg/g for microwave-synthesized MCNTs. Our results proved that MCNTs can be used as an effective Zn(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. Hence, MCNTs serve an important role in the removal of heavy metals from wastewater.


Heavy metal Wastewater treatment Separation MCNTs Microwave Zinc 



This research is financially supported by University of Malaya, Ministry of Higher Education High Impact Research grant program (UM.C/HIR/MOHE/ENG/20).


  1. 1.
    S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116 (2009)CrossRefGoogle Scholar
  2. 2.
    B. Benguella, H. Benaissa, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res. 36, 2463–2474 (2002)CrossRefGoogle Scholar
  3. 3.
    M. Panayotova, Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 21, 671–676 (2001)CrossRefGoogle Scholar
  4. 4.
    M.I. Kandah, J.-L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146, 283–288 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Coskun, A. Yildirim, C. Balcik, N. Manav Demir, E. Debik, Performances of reverse osmosis membranes for treatment of olive mill wastewater. CLEAN Soil Air Water 41, 463–468 (2013)CrossRefGoogle Scholar
  6. 6.
    X.-S. Wang, J. Huang, H.-Q. Hu, J. Wang, Y. Qin, Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J. Hazard. Mater. 142, 468–476 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Sep. Purif. Technol. 24, 497–505 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)CrossRefGoogle Scholar
  9. 9.
    Y.-S. Wang, S.-H. Hsieh, C.-H. Lee, J.-J. Horng, Adsorption of complex pollutants from aqueous solutions by nanocomposite materials. CLEAN Soil Air Water 41, 828–828 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  11. 11.
    C. Lu, H. Chiu, C. Liu, Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850–2855 (2006)CrossRefGoogle Scholar
  12. 12.
    W. Chen, L. Li, W. Zhang, F. Xu, M. Niu, J. Wang, Y. Wang, Microwave-assisted dried volcanic tephra/calcium alginate composite for phosphate removal from micro-polluted wastewater. CLEAN Soil Air Water 42, 561–570 (2014)CrossRefGoogle Scholar
  13. 13.
    A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)CrossRefGoogle Scholar
  14. 14.
    H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)CrossRefGoogle Scholar
  15. 15.
    A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)CrossRefGoogle Scholar
  16. 16.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)CrossRefGoogle Scholar
  18. 18.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996)CrossRefGoogle Scholar
  19. 19.
    R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)CrossRefGoogle Scholar
  20. 20.
    N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 43, 311–338 (2013)CrossRefGoogle Scholar
  21. 21.
    E.W. Wambu, C.O. Onindo, W. Ambusso, G.K. Muthakia, Removal of fluoride from aqueous solutions by adsorption using a siliceous mineral of a Kenyan origin. CLEAN Soil Air Water 41, 340–348 (2013)CrossRefGoogle Scholar
  22. 22.
    A.D. Atasoy, M.O. Sahin, Adsorption of fluoride on the raw and modified cement clay. CLEAN Soil Air Water 42, 415–420 (2014)CrossRefGoogle Scholar
  23. 23.
    M.I. Neria-González, R. Martínez-Guerra, R. Aguilar-López, Feedback regulation of an industrial aerobic wastewater plant. Chem. Eng. J. 139, 475–481 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Su, A.S. Adeleye, Y. Huang, X. Sun, C. Dai, X. Zhou, Y. Zhang, A.A. Keller, Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 63, 102–111 (2014)CrossRefGoogle Scholar
  25. 25.
    P. Singh, P. Raizada, D. Pathania, A. Kumar, P. Thakur, Preparation of BSA-ZnWO4 nanocomposites with enhanced adsorptional photocatalytic activity for methylene blue degradation. Int. J. Photoenergy 2013 (2013). doi: 10.1155/2013/726250
  26. 26.
    P. Singh, P. Raizada, S. Kumari, A. Kumar, D. Pathania, P. Thakur, Solar-Fenton removal of malachite green with novel Fe 0-activated carbon nanocomposite. Appl. Catal. A 476, 9–18 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Li, S. Chen, G. Sheng, J. Hu, X. Tan, X. Wang, Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem. Eng. J. 166, 551–558 (2011)CrossRefGoogle Scholar
  28. 28.
    D. Shao, G. Sheng, C. Chen, X. Wang, M. Nagatsu, Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679–685 (2010)CrossRefGoogle Scholar
  29. 29.
    N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Single stage production of carbon nanotubes using microwave technology. Diam. Relat. Mater. 48, 52–59 (2014)CrossRefGoogle Scholar
  30. 30.
    Y.H. Li, Z.C. Di, Z.K. Luan, J. Ding, H. Zuo, X.Q. Wu, C.L. Xu, D.H. Wu, Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J. Environ. Sci. China 16, 208–211 (2004)Google Scholar
  31. 31.
    M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185, 140–147 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang, Y. Xia, Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876–880 (2010)CrossRefGoogle Scholar
  33. 33.
    N.M. Mubarak, R.F. Alicia, E.C. Abdullah, J.N. Sahu, A.B.A. Haslija, J. Tan, Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng. 1, 486–495 (2013)CrossRefGoogle Scholar
  34. 34.
    J.H. Huang, C.C. Chuang, C.H. Tsai, Effect of nickel thickness and microwave power on the growth of carbon nanotubes by microwave-heated chemical vapor deposition. Microelectron. Eng. 66, 10–16 (2003)CrossRefGoogle Scholar
  35. 35.
    N.M. Mubarak, F. Yusof, M.F. Alkhatib, The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chem. Eng. J. 168, 461–469 (2011)CrossRefGoogle Scholar
  36. 36.
    Q. Wang, J. Li, C. Chen, X. Ren, J. Hu, X. Wang, Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J. 174, 126–133 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Chen, C.-M. Chen, C.-F. Chen, Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J. Mater. Sci. 37, 3561–3567 (2002)CrossRefGoogle Scholar
  38. 38.
    H. Peng, L.B. Alemany, J.L. Margrave, V.N. Khabashesku, Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174–15182 (2003)CrossRefGoogle Scholar
  39. 39.
    N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J. Mol. Catal. B Enzym. 107, 124–131 (2014)CrossRefGoogle Scholar
  40. 40.
    B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, Boca Raton, FL, 1998)Google Scholar
  41. 41.
    C.-S. Kuo, A. Bai, C.-M. Huang, Y.-Y. Li, C.-C. Hu, C.-C. Chen, Diameter control of multiwalled carbon nanotubes using experimental strategies. Carbon 43, 2760–2768 (2005)CrossRefGoogle Scholar
  42. 42.
    G.G. Yordanov, E. Adachi, C.D. Dushkin, Growth kinetics and characterization of fluorescent CdS nanocrystals synthesized with different sulfur precursors in paraffin hot-matrix. Colloids Surf. A 289, 118–125 (2006)CrossRefGoogle Scholar
  43. 43.
    M.A. Pimenta, A. Jorio, S.D.M. Brown, A.G. Souza Filho, G. Dresselhaus, J.H. Hafner, C.M. Lieber, R. Saito, M.S. Dresselhaus, Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. Phys. Rev. B 64, 041401 (2001)CrossRefGoogle Scholar
  44. 44.
    R. Saito, H. Kataura, Optical properties and Raman spectroscopy of carbon nanotubes, in Carbon Nanotubes, ed. by M. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, 2001), pp. 213–247CrossRefGoogle Scholar
  45. 45.
    D. Shao, J. Hu, C. Chen, G. Sheng, X. Ren, X. Wang, Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol. J. Phys. Chem. C 114, 21524–21530 (2010)CrossRefGoogle Scholar
  46. 46.
    H. Athalin, S. Lefrant, A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift. J. Raman Spectrosc. 36, 400–408 (2005)CrossRefGoogle Scholar
  47. 47.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)CrossRefGoogle Scholar
  48. 48.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)CrossRefGoogle Scholar
  49. 49.
    D. Shao, J. Hu, Z. Jiang, X. Wang, Removal of 4,4′-dichlorinated biphenyl from aqueous solution using methyl methacrylate grafted multiwalled carbon nanotubes. Chemosphere 82, 751–758 (2011)CrossRefGoogle Scholar
  50. 50.
    C.V. Diniz, F.M. Doyle, V.S. Ciminelli, Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Sep. Sci. Technol. 37, 3169–3185 (2002)CrossRefGoogle Scholar
  51. 51.
    R. Leyva Ramos, L. Bernal Jacome, J. Mendoza Barron, L. Fuentes Rubio, R. Guerrero Coronado, Adsorption of zinc(II) from an aqueous solution onto activated carbon. J. Hazard. Mater. 90, 27–38 (2002)CrossRefGoogle Scholar
  52. 52.
    C. Lu, H. Chiu, C. Liu, Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850–2855 (2006)CrossRefGoogle Scholar
  53. 53.
    F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)CrossRefGoogle Scholar
  54. 54.
    C.-H. Weng, C. Huang, Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids Surf. A 247, 137–143 (2004)CrossRefGoogle Scholar
  55. 55.
    C. Lu, H. Chiu, Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138–1145 (2006)CrossRefGoogle Scholar
  56. 56.
    C. Lu, H. Chiu, H. Bai, Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon. J. Nanosci. Nanotechnol. 7, 4–5 (2007)Google Scholar
  57. 57.
    X. Ren, J. Li, X. Tan, W. Shi, C. Chen, D. Shao, T. Wen, L. Wang, G. Zhao, G. Sheng, X. Wang, Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ. Sci. Technol. 48, 5493–5500 (2014)CrossRefGoogle Scholar
  58. 58.
    M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments (Productivity Press, Taylor & Francis, Statease Inc., USA, 2005)Google Scholar
  59. 59.
    J. Sahu, J. Acharya, B. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 172, 818–825 (2009)CrossRefGoogle Scholar
  60. 60.
    C. Lu, C. Liu, F. Su, Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination 249, 18–23 (2009)CrossRefGoogle Scholar
  61. 61.
    Y.-H. Li, Z. Luan, X. Xiao, X. Zhou, C. Xu, D. Wu, B. Wei, Removal of Cu2+ ions from aqueous solutions by carbon nanotubes. Adsorpt. Sci. Technol. 21, 475–485 (2003)CrossRefGoogle Scholar
  62. 62.
    W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption kinetics of acid dye acid red 88 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite. CLEAN Soil Air Water 42, 284–294 (2014)CrossRefGoogle Scholar
  63. 63.
    K. Rao, M. Mohapatra, S. Anand, P. Venkateswarlu, Review on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol. 2, 81–103 (2010)Google Scholar
  64. 64.
    C. Chen, X. Wang, Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45, 9144–9149 (2006)CrossRefGoogle Scholar
  65. 65.
    A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49–52 (2007)CrossRefGoogle Scholar
  66. 66.
    C.-H. Wu, Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J. Colloid Interface Sci. 311, 338–346 (2007)CrossRefGoogle Scholar
  67. 67.
    V. Mishra, C. Balomajumder, V.K. Agarwal, Dynamic, mechanistic, and thermodynamic modeling of Zn(II) ion biosorption onto zinc sequestering bacterium VMSDCM. CLEAN Soil Air Water 41, 883–889 (2013)CrossRefGoogle Scholar
  68. 68.
    S. Balaji, T. Kalaivani, C. Rajasekaran, Biosorption of zinc and nickel and its effect on growth of different spirulina strains. CLEAN Soil Air Water 42, 507–512 (2014)CrossRefGoogle Scholar
  69. 69.
    Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057–1062 (2003)CrossRefGoogle Scholar
  70. 70.
    S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes. CLEAN Soil Air Water 41, 539–547 (2013)CrossRefGoogle Scholar
  71. 71.
    D.G. Kinniburgh, General purpose adsorption isotherms. Environ. Sci. Technol. 20, 895–904 (1986)CrossRefGoogle Scholar
  72. 72.
    M.J. Temkin, V. Pyzhev, Acta Physiochim. URSS 12, 217 (1940)Google Scholar
  73. 73.
    S.S. Langergren, B.K. Svenska, Z.T.D. Sogenannten, The theory of adsorption of solutes. Veternskapsakad Handlingar 24 1–39 (1898)Google Scholar
  74. 74.
    Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)CrossRefGoogle Scholar
  75. 75.
    Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  76. 76.
    S. Yalçın, The mechanism of heavy metal biosorption on green marine Macroalga Enteromorpha linza. CLEAN Soil Air Water 42, 251–259 (2014)CrossRefGoogle Scholar
  77. 77.
    Y.-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787–2792 (2003)CrossRefGoogle Scholar
  78. 78.
    E. Pehlivan, B. Yanık, G. Ahmetli, M. Pehlivan, Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008)CrossRefGoogle Scholar
  79. 79.
    A.E. Agboola, R.W. Pike, T. Hertwig, H.H. Lou, Conceptual design of carbon nanotube processes. Clean Technol. Environ. Policy 9, 289–311 (2007)CrossRefGoogle Scholar
  80. 80.
    Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39, 605–609 (2005)CrossRefGoogle Scholar
  81. 81.
    Z. Gao, T.J. Bandosz, Z. Zhao, M. Han, J. Qiu, Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365 (2009)CrossRefGoogle Scholar
  82. 82.
    C. Lu, H. Chiu, Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139, 462–468 (2008)CrossRefGoogle Scholar
  83. 83.
    C. Lu, H. Chiu, Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138–1145 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • N. M. Mubarak
    • 1
    • 2
  • J. N. Sahu
    • 1
    • 3
    Email author
  • E. C. Abdullah
    • 4
  • N. S. Jayakumar
    • 1
  • P. Ganesan
    • 5
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Chemical and Petroleum Engineering, Faculty of EngineeringUCSI UniversityKuala LumpurMalaysia
  3. 3.Petroleum and Chemical Engineering Programme Area, Faculty of EngineeringInstitute Technology BruneiBrunei MuaraBrunei Darussalam
  4. 4.Malaysia – Japan International Institute of Technology (MJIIT)Universiti Teknologi MalaysiaKuala LumpurMalaysia
  5. 5.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations