Advertisement

Research on Chemical Intermediates

, Volume 42, Issue 3, pp 2487–2500 | Cite as

Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions

  • Hamideh Ahankar
  • Ali Ramazani
  • Sang Woo Joo
Article

Abstract

An easy and convenient method is reported for the synthesis of polyhydroquinoline derivatives in solvent-free conditions under microwave irradiation in the presence of magnetic nickel ferrite nanoparticles (NiFe2O4 MNPs) as a catalyst. Excellent yields (82–94 %), facile work-up, achieving high purity of products via simple recrystallization, and short reaction times (2–5 min) are some advantages of this procedure. It is worth noting, the catalyst is magnetically removed without significant loss of activity for reuse a few times.

Graphical Abstract

Keywords

Nickel ferrite Magnetic nanoparticles Polyhydroquinoline Microwave irradiation Solvent-free 

Notes

Acknowledgments

This work was supported by the “Iran National Science Foundation: INSF”.

References

  1. 1.
    D. Mauzeral, F.H. Westheimer, J. Am. Chem. Soc. 77, 2261 (1955)CrossRefGoogle Scholar
  2. 2.
    R.A. Jain, P.J. Silver, D. Triggle, Adv. Drug Res. 16, 309 (1987)Google Scholar
  3. 3.
    A. Di Stilo, S. Visentin, C. Clara, A.M. Gasco, G. Ermondi, A. Gasco, J. Med. Chem. 41, 5393 (1998)CrossRefGoogle Scholar
  4. 4.
    M. Kawase, A. Shah, H. Gaveriya, N. Motohashi, H. Sakagami, A. Varga, J. Molnar, J. Bioorg. Chem. 10, 1051 (2002)CrossRefGoogle Scholar
  5. 5.
    J.L. Reid, P.A. Meredith, F. Pasanisi, J. Cardiovasc. Pharmacol. 7(S18), 20 (1985)Google Scholar
  6. 6.
    S. Cosconati, L. Marinelli, A. Lavecchia, E. Novellino, J. Med. Chem. 50, 1504 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Godfraid, R. Miller, M. Wibo, Pharmacol. Rev. 38, 321 (1985)Google Scholar
  8. 8.
    R. Mannhold, B. Jablonka, W. Voigdt, K. Schoenafinger, K. Schravan, Eur. J. Med. Chem. 27, 229 (1992)CrossRefGoogle Scholar
  9. 9.
    Y.L. Chen, K.C. Fang, J.Y. Sheu, S.I. Hsu, C.C. Tzeng, J. Med. Chem. 44, 2374 (2001)CrossRefGoogle Scholar
  10. 10.
    G. Roma, M.D. Braccio, G. Grossi, F. Mattioli, M. Chia, Eur. J. Med. Chem. 35, 1021 (2000)CrossRefGoogle Scholar
  11. 11.
    V. Klusa, Drugs Future 20, 135 (1995)CrossRefGoogle Scholar
  12. 12.
    R.G. Bretzen, C.C. Bollen, E. Maeser, Drugs Future 17, 465 (1992)CrossRefGoogle Scholar
  13. 13.
    H. Alinezhad, S. Mohseni Tavakkoli, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1712-8 Google Scholar
  14. 14.
    B.P. Reddy, S. Sarveswari, V. Vijayakumar, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1784-5 Google Scholar
  15. 15.
    M. Nikpassand, M. Mamaghani, Kh Tabatabaeian, Molecules 14, 1468 (2009)CrossRefGoogle Scholar
  16. 16.
    S.S. Makone, D.B. Vyawahare, Int. J. Chem. Tech. Res. 5, 1550 (2013)Google Scholar
  17. 17.
    H. Kiyani, M. Ghiasi, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1621-x Google Scholar
  18. 18.
    S. Naeim Ghattali, K. Saidi, H. Khabazzadeh, Res. Chem. Intermed. 40, 281 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, Tetrahedron 64, 536 (2008)CrossRefGoogle Scholar
  20. 20.
    R.A. Mekheimer, A. Hameed, K.U. Sadek, Green Chem. 10, 592 (2008)CrossRefGoogle Scholar
  21. 21.
    S.B. Sapkal, K.F. Shelke, B.B. Shingate, M.S. Shingare, Tetrahedron Lett. 50, 1754 (2009)CrossRefGoogle Scholar
  22. 22.
    S.S. Katkar, B.R. Arbad, M.K. Lande, Arab. J. Sci. Eng. 36, 39 (2011)CrossRefGoogle Scholar
  23. 23.
    X.L. Zhang, ShR Sheng, X.L. Liu, X.L. Liu, Arkivoc 13, 79 (2007)Google Scholar
  24. 24.
    V.M. Joshi, R.P. Pawar, Eur. Chem. Bull. 2(9), 679 (2013)Google Scholar
  25. 25.
    A. Mobinikhaledi, N. Foroughifar, M.A.B. Fard, H. Moghanian, S. Ebrahimi, M. Kalhor, Synth. Commun. 39, 1166 (2009)CrossRefGoogle Scholar
  26. 26.
    N.N. Karade, V.H. Budhewar, S.V. Shinde, W.N. Jadhav, Lett. Org. Chem. 4, 16 (2007)CrossRefGoogle Scholar
  27. 27.
    G. Song, B. Wang, X. Wu, Y. Kang, L. Yang, Synth. Commun. 35, 2875 (2005)CrossRefGoogle Scholar
  28. 28.
    S. Ko, M.N.V. Sastry, C. Lin, C.F. Yao, Tetrahedron Lett. 46, 5771 (2005)CrossRefGoogle Scholar
  29. 29.
    L.S. Gadekar, S.S. Katkar, ShR Mane, B.R. Arbad, M.K. Lande, Bull. Korean Chem. Soc. 30, 2532 (2009)CrossRefGoogle Scholar
  30. 30.
    M.Z. Kassaee, H. Masrouri, F. Movahedi, Monatsh. Chem. 141, 317 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Maheswara, V. Siddaiah, G.L.V. Damu, C.V. Rao, Arkivoc 2, 201 (2006)Google Scholar
  32. 32.
    J. Safaei-Ghomi, M.A. Ghasemzadeh, J. Nanostruct. 1, 243 (2012)Google Scholar
  33. 33.
    S.J. Ji, Z.Q. Jiang, J. Lu, T.P. Loh, Synlett 5, 831 (2004)CrossRefGoogle Scholar
  34. 34.
    L.M. Wang, J. Sheng, L. Zhang, J.W. Han, Z.Y. Fan, H. Tian, C.T. Qian, Tetrahedron 61, 1539 (2005)CrossRefGoogle Scholar
  35. 35.
    C.G. Evans, J.E. Gestwicki, Org. Lett. 11, 2957 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Davoodnia, A. Khojastenezhad, J. Chil. Chem. Soc. 57, 1385 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Maleki, R. Tayebee, M. Kermanian, S. Sedigh Ashrafi, J. Mex. Chem. Soc. 57(4), 290 (2012)Google Scholar
  38. 38.
    B.L. Li, A.G. Zhong, A.G. Ying, J. Heterocycl. Chem. 52, 445 (2014)CrossRefGoogle Scholar
  39. 39.
    D. Wang, D. Astruc, Chem. Rev. 114, 6949 (2014)CrossRefGoogle Scholar
  40. 40.
    M.B. Gawande, R. Luque, R. Zboril, ChemCatChem 6, 3312 (2014)Google Scholar
  41. 41.
    R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, P. Herrasti, J. Alloys Compd. 536S, S241 (2012)CrossRefGoogle Scholar
  42. 42.
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Mater. Res. Bull. 46, 2204 (2011)CrossRefGoogle Scholar
  43. 43.
    F. Moeinpour, A. Alimoradi, M. Kazemi, J. Environ. Health Sci. Eng. 12, 112 (2014)CrossRefGoogle Scholar
  44. 44.
    A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 122 (2007)Google Scholar
  45. 45.
    E. Karaoğlu, U. Özel, C. Caner, A. Baykal, M.M. Summaka, H. Sözeri, Mater. Res. Bull. 47, 4316 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Li, Z. Li, F. Zhai, Q. Wan, X. Li, X. Qu, A.A. Volinsky, J. Phys. Chem. C 117, 25917 (2013)CrossRefGoogle Scholar
  47. 47.
    P.T.A. Santos, A.C.F.M. Costa, R.H.G.A. Kiminami, H.M.C. Andrade, H.L. Lira, L. Gama, J. Alloys Compd. 483, 399 (2009)CrossRefGoogle Scholar
  48. 48.
    M.B. Gawande, V.D.B. Bonifacio, R. Luque, P.S. Branco, R.S. Varma, ChemSusChem 7, 24 (2014)CrossRefGoogle Scholar
  49. 49.
    A. Souldozi, A. Ramazani, Tetrahedron Lett. 48, 1549 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Ramazani, A. Rezaei, Org. Lett. 12, 2852 (2010)CrossRefGoogle Scholar
  51. 51.
    A. Ramazani, N. Shajari, A. Mahyari, Y. Ahmadi, Mol. Divers. 15, 521 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Souldozi, A. Ramazani, N. Bouslimani, R. Welter, Tetrahedron Lett. 48, 2617 (2007)CrossRefGoogle Scholar
  53. 53.
    A.A. Thant, S. Srimala, P. Kaung, M. Itoh, O. Radzali, M.N. Ahmad Fauzi, J. Aust. Ceram. Soc. 46, 11 (2010)Google Scholar
  54. 54.
    I.V. Kasi Viswanath, Y.L.N. Murthy, K. Rao Tata, R. Singh, Int. J. Chem. Sci. 11, 64 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations