Research on Chemical Intermediates

, Volume 42, Issue 2, pp 1029–1043 | Cite as

Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light

  • María E. Zarazúa-Morín
  • Leticia M. Torres-Martínez
  • Edgar Moctezuma
  • Isaías Juárez-Ramírez
  • Brenda B. Zermeño


High-purity ilmenite, FeTiO3, was prepared by the sol–gel method and calcination under nitrogen atmosphere. Several FeTiO3/TiO2 catalysts were prepared by the impregnation method using ilmenite and titania, both synthesized by the sol–gel method with ethanol and acetic acid. FeTiO3/TiO2 photocatalysts exhibited significant absorption in the ultraviolet (UV) region with an energy bandgap between 2.9 and 3.1 eV. These materials are more active than titania (Degussa P25) for degradation of Orange G and 4-chlorophenol under illumination from a visible-light lamp. This effect may be attributed to the formation of a heterojunction at the point of contact between FeTiO3 and TiO2 particles. However, 4-chlorophenol is mineralized via formation of hydroquinone and benzoquinone, indicating that when illuminated with a solar emulator lamp, the materials did not generate enough HO· radicals to promote formation of benzenetriol and catechol.


Ilmenite Environmental TiO2 Mixed oxides Photodegradation 


  1. 1.
    N.C. Wilson, J. Muscat, D. Mkhonto, P.E. Ngoepe, N.M. Harrison, Phys. Rev. B71(7), 075202-1–075202-9 (2005)Google Scholar
  2. 2.
    R.P. Liferovich, R.H. Mitchell, Crystallogr. Rep. 51(3), 383–390 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Zhang, T. Katsura, A. Shatskiy, T. Matsuzaki, X. Wu, Phys. Rev. B73, 134104-1–134104-5 (2006)Google Scholar
  4. 4.
    D.M. Giaquinta, H. Loye, Chem. Mater. 6, 365–372 (1994)CrossRefGoogle Scholar
  5. 5.
    A. Navrotsky, Chem. Mater. 10, 2787–2793 (1998)CrossRefGoogle Scholar
  6. 6.
    T. Fujii, H. Oohashi, T. Tochio, Y. Ito, A. Vlaicu, S. Fukushima, J. Electron Spectrosc. Relat. Phenom. 184, 10–15 (2011)CrossRefGoogle Scholar
  7. 7.
    X. Wu, N.G. Steinle, O. Narygina, I. Kantor, C.M. Cammon, S. Pascarelli, G. Aquilanti, V. Prakapenka, L. Dubrovinsky, Phys. Rev. B79, 094106-1–094106-7 (2009)Google Scholar
  8. 8.
    G.B. Andreozzi, F. Cellucci, D. Gozzi, J. Mater. Chem. 6, 987–991 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Mona, S.N. Kale, A.B. Gaikwad, A. Vadivel, V. Ravi, Mater. Lett. 60, 1425–1427 (2006)CrossRefGoogle Scholar
  10. 10.
    Y.J. Kim, B. Gao, S.Y. Han, H.M. Jung, A.K. Chakraborty, T. Ko, C. Lee, W.I. Lee, J. Phys. Chem. C 113(44), 19179–19184 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Ohara, K. Sato, Z. Tan, H. Shimoda, M. Ueda, T. Fukui, J. Alloys Compd. 504, L17–L19 (2010)CrossRefGoogle Scholar
  12. 12.
    A.B. Gambhire, M.K. Lande, S.B. Rathod, B.R. Arbad, K.N. Vidhate, R.S. Gholap, K.R. Patil, Arab. J. Chem. doi:10.1016/j.arabjc.2011.05.012
  13. 13.
    Y.H. Chen, J. Non-Cryst. Solids 357, 136–139 (2011)CrossRefGoogle Scholar
  14. 14.
    A.T. Raghavender, N.H. Hong, K.J. Lee, M. Jung, Z. Skoko, M. Vasilevskiy, M.F. Cerqueira, A.P. Samantilleke, J. Magn. Magn. Mater. 331, 129–132 (2013)CrossRefGoogle Scholar
  15. 15.
    S.W. Chen, M.J. Huang, P.A. Lin, H.T. Jeng, J.M. Lee, S.C. Haw, S.A. Chen, H.J. Lin, K.T. Lu, D.P. Chen, S.X. Dou, X.L. Wang, J.M. Chen, Appl. Phys. Lett. 102, 042107-1–042107-5 (2013)Google Scholar
  16. 16.
    X. Tang, K. Hu, J. Mater. Sci. 41, 8025–8028 (2006)CrossRefGoogle Scholar
  17. 17.
    L. Fudong, H. Hong, Z. Changbin, Chem. Commun. 17, 2043–2045 (2008)Google Scholar
  18. 18.
    B. Gao, Y.J. Kim, A.K. Chakraborty, W.I. Lee, Appl. Catal. B Environ. 83, 202–207 (2008)CrossRefGoogle Scholar
  19. 19.
    Q.D. Truong, J.Y. Liu, C.C. Chung, Y.C. Ling, Catal. Commun. 19, 85–89 (2012)CrossRefGoogle Scholar
  20. 20.
    F.A. Caliman, M. Gavrilescu, Clean 37(4–5), 277–303 (2009)Google Scholar
  21. 21.
    T.E. Félix-Cañedo, J.C. Durán-Álvarez, B. Jiménez-Cisneros, Sci. Total Environ. 454–455, 109–118 (2013)CrossRefGoogle Scholar
  22. 22.
    D. Kanakaraju, B.D. Glass, M. Oelgemöller, Environ. Chem. Lett. 12, 27–47 (2014)CrossRefGoogle Scholar
  23. 23.
    P. Gao, Y. Ding, H. Li, I. Xagoraraki, Chemosphere 88, 17–24 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Montaño, A.C. Gutleb, A.J. Murk, Environ. Sci. Technol. 47, 6071–6081 (2013)Google Scholar
  25. 25.
    S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1–59 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012)CrossRefGoogle Scholar
  27. 27.
    R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581–3599 (2013)Google Scholar
  28. 28.
    D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186–205 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, ACS Appl. Mater. Interfaces 4, 424–430 (2012)CrossRefGoogle Scholar
  30. 30.
    G.A. Traistaru, C.I. Covaliu, V. Matei, D. Cusaru, I. Jitaru, Dig. J. Nanomater. Biostruct. 6, 1257–1263 (2011)Google Scholar
  31. 31.
    E. Moctezuma, B. Zermeño, E. Zarazua, L. Torres-Martínez, R. García, Top. Catal. 54, 496–503 (2011)CrossRefGoogle Scholar
  32. 32.
    J.G. Ibañez, O. Solorza, E. Gómez del Campo, J. Chem. Educ. 68, 872–875 (1991)CrossRefGoogle Scholar
  33. 33.
    J. Torrent, V. Barrón, Encycl. Surf. Colloid Sci. 1438–1446 (2002)Google Scholar
  34. 34.
    B. Zermeño, E. Moctezuma, R. Gracía-Alamilla, Environ. Res. 21, 299–305 (2011)Google Scholar
  35. 35.
    X. Li, J.W. Cubbage, T.A. Tetzlaff, W.S. Jenks, J. Org. Chem. 64, 8509–8524 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • María E. Zarazúa-Morín
    • 1
  • Leticia M. Torres-Martínez
    • 1
  • Edgar Moctezuma
    • 2
  • Isaías Juárez-Ramírez
    • 1
  • Brenda B. Zermeño
    • 2
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations