Research on Chemical Intermediates

, Volume 42, Issue 2, pp 855–868 | Cite as

Electrochemical and photo-assisted electrochemical treatment of the pesticide imidacloprid in aqueous solution by the Fenton process: effect of operational parameters

  • Marjan Sedaghat
  • Behrouz Vahid
  • Soheil Aber
  • Mohammad H. Rasoulifard
  • Alireza Khataee
  • Nezamalddin Daneshvar


The aim of this study was to compare the degradation efficiency (DE%) of imidacloprid as a model pesticide by electro-Fenton (EF) and photoelectro-Fenton processes (PEF) using undivided three-electrode electrochemical cell and UV irradiation in a batch mode. The potential of the working electrode (graphite) was fixed at −1.0 V versus the saturated calomel electrode. The selected operating conditions for treatment of imidacloprid (20 mg/L) were: pH 2.8, Fe2+ concentration of 0.36 mM and Na2SO4 concentration of 0.15 M as the background electrolyte, which produced a DE% of 59.23 and 80.49 % for EF and PEF after 180 min, respectively. Considerable synergistic effect between EF and UV processes was observed due to the regeneration of Fe2+ ions and more production of hydroxyl radicals (·OH). Besides, accumulation of the electro-generated H2O2 in the electrochemical system as the source of ·OH radicals was confirmed. Moreover, total organic carbon measurements under the optimized condition demonstrated that 50.73 and 67.15 % of the organic substrates were mineralized after 300 min of the treatment by the EF and PEF, respectively. Eventually, the experimental results revealed that the degradation and mineralization rates of the pesticide followed pseudo-first-order kinetics; however, the rate constants of the mineralization were lower than the degradation ones owing to the generated intermediates, which required more treatment during the processes.


Electrochemical treatment Imidacloprid Degradation Mineralization EF PEF 



The authors thank the University of Tabriz, Iran for financial and other supports.


  1. 1.
    W.K. Lafi, Z. Al-Qodah, J. Hazard. Mater. 137, 489–497 (2006)CrossRefGoogle Scholar
  2. 2.
    V.A. Sakkas, A. Dimou, K. Pitarakis, G. Mantis, T. Albanis, Environ. Chem. Lett. 3, 57–61 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Ayranci, N. Hoda, Chemosphere 60, 1600–1607 (2005)CrossRefGoogle Scholar
  4. 4.
    M.L. Hladik, A.L. Roberts, E.J. Bouwer, Water Res. 39, 5033–5034 (2005)CrossRefGoogle Scholar
  5. 5.
    K.V. Plakas, A.J. Karabelas, Desalination 287, 255–265 (2012)CrossRefGoogle Scholar
  6. 6.
    D. Singh, Indian J. Microbiol. 48, 35–40 (2008)CrossRefGoogle Scholar
  7. 7.
    A. El-Ghenymy, S. Garcia-Segura, R.M. Rodríguez, E. Brillas, M.S. El Begrani, B.A. Abdelouahid, J. Hazard. Mater. 221–222, 288–297 (2012)CrossRefGoogle Scholar
  8. 8.
    E.J. Ruiz, A. Hernández-Ramírez, J.M. Peralta-Hernández, C. Arias, E. Brillas, Chem. Eng. J. 171, 385–392 (2011)CrossRefGoogle Scholar
  9. 9.
    B. Vahid, A.R. Khataee, Electrochim. Acta 88, 614–620 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Brillas, I. Sires, M.A. Oturan, Chem. Rev. 109, 6570–6661 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Zhang, J. Fu, Y. Zhang, L. Lei, Sep. Purif. Technol. 64, 116–123 (2008)CrossRefGoogle Scholar
  12. 12.
    A.K. Abdessalem, N. Bellakhal, N. Oturan, M. Dachraoui, M.A. Oturan, Desalination 250, 450–455 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Brillas, B. Boye, I. Sirés, J.A. Garrido, R.M. Rodríguez, C. Arias, P.L. Cabot, C. Comninellis, Electrochim. Acta 49, 4487–4496 (2004)CrossRefGoogle Scholar
  14. 14.
    A.R. Khataee, B. Vahid, B. Behjati, M. Safarpour, S.W. Joo, Chem. Eng. Res. Des. 92, 362–367 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Xu, W. Xu, J. Wang, Environ. Prog. Sustain. Energy 30, 208–215 (2011)CrossRefGoogle Scholar
  16. 16.
    A.R. Khataee, B. Vahid, B. Behjati, M. Safarpour, Environ. Prog. Sustain. Energy 32, 557–563 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Irmak, H.I. Yavuz, O. Erbatur, Appl. Catal. B: Environ. 63, 243–248 (2006)CrossRefGoogle Scholar
  18. 18.
    I. Sires, C. Arias, P.L. Cabot, F. Centellas, R.M. Rodriguez, J.A. Garrido, E. Brillas, Environ. Chem. 1, 26–28 (2004)CrossRefGoogle Scholar
  19. 19.
    E. Brillas, B. Boye, M.A. Banos, J.C. Calpe, J.A. Garrido, Chemosphere 51, 227–235 (2003)CrossRefGoogle Scholar
  20. 20.
    N. Daneshvar, S. Aber, V. Vatanpour, M.H. Rasoulifard, J. Electroanal. Chem. 615, 165–174 (2008)CrossRefGoogle Scholar
  21. 21.
    C. Barrera-Díaza, F. Ureňa-Nuňez, E. Campos, M. Palomar-Pardavé, M. Romero-Romo, Radiat. Phys. Chem. 67, 657–663 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Cox, J. Pest. Reform. 21, 12–20 (2001)Google Scholar
  23. 23.
    M.A. Oturan, N. Oturan, C. Lahitte, S. Trevin, J. Electroanal. Chem. 507, 96–102 (2001)CrossRefGoogle Scholar
  24. 24.
    N.V. Kiassen, D. Marchington, H.C.E. McGowant, Anal. Chem. 66, 2921–2925 (1994)CrossRefGoogle Scholar
  25. 25.
    M. Zarei, A.R. Khataee, R. Ordikhani-Seyedlar, M. Fathinia, Electrochim. Acta 55, 7259–7265 (2010)CrossRefGoogle Scholar
  26. 26.
    E. Brillas, J.C. Caple, J. Casado, Water Res. 34, 225–2262 (2000)CrossRefGoogle Scholar
  27. 27.
    L.G. Devi, K.E. Rajashekhar, J. Mol. Catal. A: Chem. 334, 65–76 (2011)CrossRefGoogle Scholar
  28. 28.
    A.R. Khataee, A. Akbarpour, B. Vahid, J. Taiwan Inst. Chem. Eng. 45, 930–936 (2014)CrossRefGoogle Scholar
  29. 29.
    W.P. Ting, M.C. Lu, Y.H. Huang, J. Hazard. Mater. 161, 1484–1490 (2009)CrossRefGoogle Scholar
  30. 30.
    B. Boye, M.M. Dieng, E. Brillas, J. Electroanal. Chem. 557, 135–146 (2003)CrossRefGoogle Scholar
  31. 31.
    E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 33–50 (2003)CrossRefGoogle Scholar
  32. 32.
    G. Saracco, L. Solarino, R. Aigotti, V. Specchia, M. Maja, Electrochim. Acta 46, 373–380 (2000)CrossRefGoogle Scholar
  33. 33.
    M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, Appl. Catal. A: General 260, 215–222 (2004)CrossRefGoogle Scholar
  34. 34.
    M. Diagne, N. Oturan, M.A. Oturan, Chemosphere 66, 841–848 (2007)CrossRefGoogle Scholar
  35. 35.
    K. Rajeshwar, M. Osugi, W. Chanmanee, C. Chenthamarakshan, M. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C 9, 171–192 (2008)CrossRefGoogle Scholar
  36. 36.
    B. Vahid, T. Mousanejad, A.R. Khataee, Res. Chem. Intermed. In press. doi:  10.1007/s11164-014-1796-1

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marjan Sedaghat
    • 1
  • Behrouz Vahid
    • 2
  • Soheil Aber
    • 3
  • Mohammad H. Rasoulifard
    • 4
  • Alireza Khataee
    • 1
  • Nezamalddin Daneshvar
    • 5
  1. 1.Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  2. 2.Department of Chemical Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran
  3. 3.Research Laboratory of Environmental Protection Technology, Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran
  4. 4.Water and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran
  5. 5.Department of Applied Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations