Research on Chemical Intermediates

, Volume 42, Issue 2, pp 391–406 | Cite as

Hybrid catalytic effects of K2CO3 on the synthesis of salicylic acid from carboxylation of phenol with CO2

  • Miaofei Gu
  • Xingxing Yan
  • Zhenmin Cheng


As a base-promoted Kolbe–Schmitt carboxylation reaction, the mechanism of synthesis of salicylic acid derivatives from phenols with CO2 in the industry is still unclear, even up to now. In this paper, synthesis of 3,6-dichloro salicylic acid (3,6-DCSA) from 2,5-dichloro phenoxide and CO2 was investigated in the presence of K2CO3. We show the reaction can proceed by itself, but it goes at a slower rate as well as a lower yield, compared to the case with the addition of K2CO3. However, the yield of 3,6-DCSA is only minorly affected by the size of K2CO3, which cannot be explained from the view of catalytic effect. Therefore, K2CO3 may on one hand act as a catalyst for the activation of CO2 so that the reaction can be accelerated, while on the other hand, it also acts as a co-reactant in deprotonating the phenol formed by the side reaction to phenoxide, which is further converted to salicylate.


3,6-Dichrolo salicylic acid Kolbe–Schmitt reaction Carboxylation CO2 utilization 



Financial support from the Fundamental Research Funds for the Central Universities is gratefully acknowledged.


  1. 1.
    C.R. Worthing, S.B. Walker, Pesticides Manual: A World Compendium (British Crop Protection Council, London, 1987), p. 693Google Scholar
  2. 2.
    A.S. Lindsey, H. Jeskey, Chem. Rev. 57, 583 (1957)CrossRefGoogle Scholar
  3. 3.
    F. Wessely, K. Benedikt, H. Benger, G. Friedrich, F. Prillinger, Monatsh. Chem. 81, 1071 (1950)CrossRefGoogle Scholar
  4. 4.
    X. Yan, Z. Cheng, Z. Yue, P. Yuan, Res. Chem. Intermed. 40, 3059 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Hoch, Q. Seeger, US 4,002,675 (1977) Google Scholar
  6. 6.
    O.F. Schulz, H. Martens, K. Burgdorf, US 2,808,434 (1957)Google Scholar
  7. 7.
    J.C. Wygant, US 3,089,905 (1960)Google Scholar
  8. 8.
    J.L. Hales, J.I. Jones, A.S. Lindsey, J. Chem. Soc. 3145 (1954). doi: 10.1039/JR9540003145
  9. 9.
    S.E. Hunt, J.I. Jones, A.S. Lindsey, D.C. Killoh, H.S. Turner, J. Chem. Soc. 3152 (1958). doi: 10.1039/JR9580003152
  10. 10.
    M. Kunert, E. Dinjus, M. Nauck, J. Sieler, Chem. Ber./ Recl. 130, 1461 (1997)CrossRefGoogle Scholar
  11. 11.
    O. Baine, G.F. Adamson, J.W. Barton, J.L. Fitch, D.R. Swayampati, H. Jeskey, J. Org. Chem. 19, 510 (1954)CrossRefGoogle Scholar
  12. 12.
    Z. Markovic, S. Markovic, N. Begovic, J. Chem. Inf. Model. 46, 1957 (2006)CrossRefGoogle Scholar
  13. 13.
    I. Stanescu, R.R. Gupta, L.E.K. Achenie, Mol. Simul. 32, 279 (2006)CrossRefGoogle Scholar
  14. 14.
    I. Stanescu, L.E.K. Achenie, Chem. Eng. Sci. 61, 6199 (2006)CrossRefGoogle Scholar
  15. 15.
    Z. Markovic, S. Markovic, N. Manojlovic, J. Predojevic-Simovic, J. Chem. Inf. Model. 47, 1520 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Kosugi, Y. Imaoka, F. Gotoh, M.A. Rahim, Y. Matsui, K. Sakanishi, Org. Biomol. Chem. 1, 817 (2003)CrossRefGoogle Scholar
  17. 17.
    Z. Markovic, J.P. Engelbrecht, S. Markovic, Z. Naturfors, Sect. A-J. Phys. Sci. 57, 812 (2002)Google Scholar
  18. 18.
    X. Yan, Z. Cheng, Z. Yue, P. Yuan, Res. Chem. Intermed. 40, 3045 (2014)CrossRefGoogle Scholar
  19. 19.
    N. Aljaar, J. Conrad, U. Beifuss, J. Org. Chem. 78, 1045 (2013)CrossRefGoogle Scholar
  20. 20.
    V. Eta, P. Mäki-Arvela, A.R. Leino, T. Salmi, D.Y. Murzin, J.P. Mikkola, Ind. Eng. Chem. Res. 49, 9609 (2010)CrossRefGoogle Scholar
  21. 21.
    Q. Cai, B. Lu, L. Guo, Y. Shan, Catal. Commun. 10, 605 (2009)CrossRefGoogle Scholar
  22. 22.
    T. Iijima, T. Yamaguchi, Appl. Catal. A 345, 12 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Yamaguchi, Y. Wang, M. Komatsu, M. Ookawa, Catal. Surv. Jpn. 5, 81 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Kurth, J.P. Perdew, P. Blaha, Int. J. Quantum Chem. 75, 889 (1999)CrossRefGoogle Scholar
  25. 25.
    J.P. Perdew, Y. Wang, Phys. Rev. B. 45, 13244 (1992)CrossRefGoogle Scholar
  26. 26.
    V. Balachandran, S. Rajeswari, S. Lalitha, J. Mol. Struct. 1007, 63 (2012)CrossRefGoogle Scholar
  27. 27.
    M.A. Rahim, Y. Matsui, Y. Kosugi, Bull. Chem. Soc. Jpn. 75, 619 (2002)CrossRefGoogle Scholar
  28. 28.
    U. Krtschil, V. Hessel, D. Reinhard, A. Stark, Chem. Eng. Technol. 32, 1774 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Kashid, A. Renken, L. Kiwi-Minsker, Chem. Eng. Sci. 66, 1480 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Yeadon, T.A. Turney, G. Ramsay, J. Chem. Educ. 62, 518 (1985)CrossRefGoogle Scholar
  31. 31.
    A. Sclafani, L. Palmisano, G. Farneti, Chem. Commun. 529 (1997). doi: 10.1039/A607705F
  32. 32.
    I. Lukic, J. Krstic, D. Jovanovic, D. Skala, Bioresour. Technol. 100, 4690 (2009)CrossRefGoogle Scholar
  33. 33.
    F. Massoth, L. Doraiswamy, Ind. Eng. Chem. Process Des. Dev. 5, 351 (1966)CrossRefGoogle Scholar
  34. 34.
    S. Pereda, E.A. Brignole, S.B. Bottini, J. Supercrit. Fluids 47, 336 (2009)CrossRefGoogle Scholar
  35. 35.
    Y. Idemoto, J.W. Richardson Jr, N. Koura, S. Kohara, C.-K. Loong, J. Phys. Chem. Solids 59, 363 (1998)CrossRefGoogle Scholar
  36. 36.
    H.Y. Becht, R. Struikmans, Acta Crystallogr. Sect. B: Struct. Sci. 32, 3344 (1976)CrossRefGoogle Scholar
  37. 37.
    H. Gao, S. Pishney, M.J. Janik, Surf. Sci. 609, 140 (2013)CrossRefGoogle Scholar
  38. 38.
    O. Seiferth, K. Wolter, B. Dillmann, G. Klivenyi, H.J. Freund, D. Scarano, A. Zecchina, Surf. Sci. 421, 176 (1999)CrossRefGoogle Scholar
  39. 39.
    V.L. Mil’to, V.Y. Orlov, G.S. Mironov, V.V. Kopeikin, Kinet. Catal. 42, 471 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations