Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9333–9341 | Cite as

Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

  • Lei Wang
  • Chong-Yong Lee
  • Robin Kirchgeorg
  • Ning Liu
  • Kiyoung Lee
  • Štěpán KmentEmail author
  • Zdeněk Hubička
  • Josef Krýsa
  • Jiří Olejníček
  • Martin Čada
  • Radek Zbořil
  • Patrik Schmuki
Article

Abstract

In the present work, we investigate the self-organized anodic formation of nanotubular/porous hematite structures from Fe thin films on fluorine doped tin oxide (FTO) substrates. We show, for different metal film thicknesses, that transparent layers of an aligned 1D oxide morphology can be grown by complete anodization of sputtered iron films. The nanoporous or nanotubular structures show very different potentials for use as a photoanode for solar water splitting. Best performance under AM 1.5 (100 mW cm−2) conditions were found for a nanoporous hematite structure obtained after anodizing a 570-nm-thick iron film and using combined air/Ar annealing to maintain the nanoscale morphology.

Keywords

Hematite nanotubular/porous Anodization Sputtered iron films Water splitting 

Notes

Acknowledgments

We thank DFG and the DFG cluster of excellence “Engineering of Advanced Materials” (EAM), and project 13-29241P of the Grant Agency of the Czech Republic for financial support.

References

  1. 1.
    S.U.M. Khan, J. Akikusa, J. Phys. Chem. B 103(34), 7184 (1999)CrossRefGoogle Scholar
  2. 2.
    Y.S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, Chem. Mater. 20(12), 3803 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, J. Am. Chem. Soc. 132(21), 7436 (2010)CrossRefGoogle Scholar
  4. 4.
    K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 4(4), 432 (2011)CrossRefGoogle Scholar
  5. 5.
    F.L. Formal, M. Grätzel, K. Sivula, Adv. Funct. Mater. 20(7), 1099 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11(5), 2119 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Jia, K. Harbauer, P. Bogdanoff, I. Herrmann-Geppert, A. Ramirez, R. van de Krol, S. Fiechter, J. Mater. Chem. A 2, 20196 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Kment, Z. Hubicka, J. Krysa, D. Sekora, M. Zlamal, J. Olejnicek, M. Cada, P. Ksirova, Z. Remes, P. Schmuki, E. Schubert, R. Zboril, Appl. Catal. B Environ. 165, 344 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Kment, Z. Hubicka, J. Krysa, J. Olejnicek, M. Cada, I. Gregora, M. Zlamal, M. Brunclikova, Z. Remes, N. Liu, L. Wang, R. Kirchgeorg, C.Y. Lee, P. Schmuki, Catal. Today 230, 8 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka, Molecules 20(1), 1046 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Rajendran, Z. Yaakob, M. Pudukudy, M.S.A. Rahaman, K. Sopian, J. Alloy. Compdn. 608, 207 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Sivula, F. Le Formal, M. Grätzel, Chem. Mater. 21(13), 2862 (2009)CrossRefGoogle Scholar
  13. 13.
    P.H. Borse, H. Jun, S.H. Choi, S.J. Hong, J.S. Lee, Appl. Phys. Lett. 93(17), 173103 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Brillet, M. Grätzel, K. Sivula, Nano Lett. 10(10), 4155 (2010)CrossRefGoogle Scholar
  15. 15.
    R.H. Goncalves, B.H.R. Lima, E.R. Leite, J. Am. Chem. Soc. 133(15), 6012 (2011)CrossRefGoogle Scholar
  16. 16.
    N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147(7), 2456 (2000)CrossRefGoogle Scholar
  17. 17.
    R. Morrish, M. Rahman, J.M.D. MacElroy, C.A. Wolden, ChemSusChem 4(4), 474 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Mao, K. Shin, J.K. Kim, D.H. Wang, G.Y. Han, J.H. Park, A.C.S. Appl, Mater. Interfaces 3(6), 1852 (2011)CrossRefGoogle Scholar
  19. 19.
    S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Chem. Mater. 21(14), 3048 (2009)CrossRefGoogle Scholar
  20. 20.
    R.R. Rangaraju, A. Panday, K.S. Raja, M. Misra, J. Phys. D Appl. Phys. 42(13), 135303 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, M. Reymermier, A. Pereira, M. Fontecave, V. Artero, C. Laberty-Robert, C. Sanchez, Phys. Chem. Chem. Phys. 14(38), 13224 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Wang, C.-Y. Lee, P. Schmuki, J. Mater Chem. A 1(2), 212 (2013)CrossRefGoogle Scholar
  23. 23.
    C.-Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, P. Schmuki, Electrochem. Commun. 34, 308 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, G.E. Thompson, J. Phys. Chem. C 114(44), 18853 (2010)CrossRefGoogle Scholar
  25. 25.
    S.P. Albu, P. Schmuki, Electrochim. Acta 91, 90 (2013)CrossRefGoogle Scholar
  26. 26.
    T.J. Nakau, Phys. Soc. Japan 15, 727 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Lei Wang
    • 1
  • Chong-Yong Lee
    • 1
  • Robin Kirchgeorg
    • 1
  • Ning Liu
    • 1
  • Kiyoung Lee
    • 1
  • Štěpán Kment
    • 2
    Email author
  • Zdeněk Hubička
    • 3
  • Josef Krýsa
    • 4
  • Jiří Olejníček
    • 2
  • Martin Čada
    • 2
  • Radek Zbořil
    • 2
  • Patrik Schmuki
    • 1
    • 5
  1. 1.Department of Materials Science and EngineeringUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Regional Centre of Advanced Technologies and Materials, Joint Laboratory of OpticsPalacky University OlomoucOlomoucCzech Republic
  3. 3.Institute of PhysicsAcademy of Science of the Czech RepublicPragueCzech Republic
  4. 4.Department of Inorganic TechnologyInstitute of Chemical Technology PraguePragueCzech Republic
  5. 5.Department of ChemistryKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations