Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9929–9949 | Cite as

Enhanced photocatalytic removal of phenazopyridine by using silver-impregnated SiO2–TiO2 nanoparticles: optimization of synthesis variables

  • Hamed Eskandarloo
  • Alireza Badiei
  • Mohammad A. Behnajady
  • Morteza Afshar
Article

Abstract

Silver-impregnated silicon oxide/titanium oxide nanoparticles (Ag/SiO2–TiO2) were prepared via impregnation method. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and UV–Vis diffuse reflectance spectroscopy techniques were used for the characterization of prepared nanoparticles. The effects of synthesis variables such as nanoporous SiO2 content, Ag content, impregnation pH, and calcination temperature were studied in the photocatalytic activity of prepared nanoparticles in the removal of phenazopyridine as a model drug contaminant. Response surface methodology as a statistical technique was employed for modeling and optimizing synthesis variables. Results showed that the maximum removal efficiency (97.14 %) was achieved for Ag/SiO2–TiO2 nanoparticles at the optimized preparation conditions: SiO2 content of 34.68 wt%, Ag content of 2.36 wt%, impregnation pH of 5.1, and calcination temperature of 439 °C, whereas at the same conditions, using TiO2, SiO2–TiO2, and Ag–TiO2 samples lead to 50.14, 60.37, and 71.45 % removal efficiency, respectively. Coupling SiO2 with large surface area significantly enhanced adsorption of drug molecules, and also impregnation of Ag onto the hybrid system by its ability to trap electrons, provided a synergistic effect in the enhancement of the TiO2 nanoparticles photocatalytic activity.

Keywords

Photocatalytic removal Phenazopyridine Silver impregnation SiO2–TiO2 Synthesis variable Optimization 

Notes

Acknowledgments

The authors would like to thank the University of Tehran for financial support of this work.

Supplementary material

11164_2015_2000_MOESM1_ESM.docx (546 kb)
Supplementary material 1 (DOCX 546 kb)

References

  1. 1.
    H. Eskandarloo, A. Badiei, M.A. Behnajady, Ind. Eng. Chem. Res. 53, 6881 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Min, G. He, R. Li, W. Zhao, Y. Chen, Y. Zhang, Sep. Purif. Technol. 106, 97 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Fujishima, T.N. Rao, D.A. Truk, J. Photochem. Photobiol. C 1, 1 (2000)CrossRefGoogle Scholar
  4. 4.
    M.A. Behnajady, H. Eskandarloo, F. Eskandarloo, Res. Chem. Intermed. (2014). doi: 10.1007/s11164-014-1753-z
  5. 5.
    E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Ceram. Soc. 126, 7790 (2004)Google Scholar
  6. 6.
    M.A. Behnajady, H. Eskandarloo, Res. Chem. Intermed. 41, 2001 (2015)Google Scholar
  7. 7.
    H. Eskandarloo, A. Badiei, C. Haug, Mater. Sci. Semicond. Process. 27, 240 (2014)CrossRefGoogle Scholar
  8. 8.
    M.A. Rauf, S.S. Ashraf, Chem. Eng. J. 151, 10 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Eskandarloo, A. Badiei, Environ. Technol. 36, 1063 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller, J. Phys. Chem. 99, 5633 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Xiong, S. George, Z. Ji, S. Lin, H. Yu, R. Damoiseaux, B. France, K.W. Ng, S.C.J. Loo, Arch. Toxicol. 87, 99 (2013)CrossRefGoogle Scholar
  12. 12.
    M. El-Kemary, H. El-Shamy, I. El-Mehasseb, J. Lumin. 130, 2327 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Song, J. Zhou, J. Bao, Y. Feng, J. Am. Ceram. Soc. 91, 1369 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Eskandarloo, A. Badiei, M.A. Behnajady, Ind. Eng. Chem. Res. 53, 7847 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, L. Lei, J. Zhang, Q. Chen, J. Bao, B. Fang, Sep. Purif. Technol. 66, 417 (2009)CrossRefGoogle Scholar
  16. 16.
    L. Pinho, M.J. Mosquera, Appl. Catal. B 134–135, 205 (2013)CrossRefGoogle Scholar
  17. 17.
    X.-J. Wang, F.-T. Li, Y.-J. Hao, S.-J. Liu, M.-L. Yang, Mater. Lett. 99, 38 (2013)CrossRefGoogle Scholar
  18. 18.
    A.R. Badiei, G. Mohammadi, Ziarani, A.R. Abbasi, M. Jafarabadi. J. Nano Structure 2, 1 (2012)Google Scholar
  19. 19.
    H. Eskandarloo, A. Badiei, M.A. Behnajady, G.M. Ziarani, RSC Adv. 4, 28587 (2014)CrossRefGoogle Scholar
  20. 20.
    M.A. Behnajady, H. Eskandarloo, Chem. Eng. J. 228, 1207 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Wang, Y. Mu, H.Q. Yu, Biochem. Eng. J. 23, 175 (2005)CrossRefGoogle Scholar
  22. 22.
    J. Chen, G. Li, Y. Huang, H. Zhang, H. Zhao, T. An, Appl. Catal. B 123, 69 (2012)CrossRefGoogle Scholar
  23. 23.
    A.S. Gopalachar, V.L. Bowie, P. Bharadwaj, Ann. Pharmacother. 39, 1128 (2005)CrossRefGoogle Scholar
  24. 24.
    L. Bonneviot, M. Morin, A. Badiei, Mesostructured metal or non-metal oxides and method for making same, Patent WO 01/55031 A1 2001Google Scholar
  25. 25.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  26. 26.
    R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)CrossRefGoogle Scholar
  27. 27.
    A.M. Abdul-Kader, Philos. Mag. Lett. 89, 162 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Kesraoui-Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Appl. Catal. B 78, 334 (2008)CrossRefGoogle Scholar
  29. 29.
    D.P. Haaland, Experimental design in biotechnology (Marcel Dekker Inc., New York, 1989)Google Scholar
  30. 30.
    H.L. Liu, Y.R. Chiou, Chem. Eng. J. 112, 173 (2005)CrossRefGoogle Scholar
  31. 31.
    F. Francis, A. Sabu, K.M. Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, A. Pandey, Biochem. Eng. J. 15, 107 (2003)CrossRefGoogle Scholar
  32. 32.
    Y. Li, S. Peng, F. Jiang, G. Lu, S. Li, J. Serb. Chem. Soc. 72, 393 (2007)CrossRefGoogle Scholar
  33. 33.
    H. Zhu, Y. Wu, X. Zhao, H. Wan, L. Yang, J. Hong, Q. Yu, L. Dong, Y. Chen, C. Jian, J. Wei, P. Xu, J. Mol. Catal. A Chem. 243, 24 (2006)CrossRefGoogle Scholar
  34. 34.
    Q. Jia, Y. Zhang, Z. Wu, P. Zhang, Tribol. Lett. 26, 19 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Mahyar, M.A. Behnajady, N. Modirshahla, Photochem. Photobiol. 87, 795 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Cheng, M. Zheng, Y. Jin, Q. Huang, M. Gu, Mater. Lett. 57, 2989 (2003)CrossRefGoogle Scholar
  37. 37.
    C. Xie, Z. Xu, Q. Yang, B. Xue, Y. Du, J. Zhang, Mater. Sci. Eng. B 112, 34 (2004)CrossRefGoogle Scholar
  38. 38.
    K.N. Tayade, M. Mishra, J. Mol. Catal. A Chem. 382, 114 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Granqvist, T. Sandberg, M. Hotokka, J. Colloid Interface Sci. 310, 369 (2007)CrossRefGoogle Scholar
  40. 40.
    J.M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J.B. Rosenholm, M. Lindén, Langmuir 23, 4315 (2007)CrossRefGoogle Scholar
  41. 41.
    I. Bano, R.V. Kumar, A. Hameed, Ionics 18, 307 (2012)CrossRefGoogle Scholar
  42. 42.
    Y. Cheng, H. Sun, W. Jin, N. Xu, Chem. Eng. J. 128, 127 (2007)CrossRefGoogle Scholar
  43. 43.
    R. Georgekutty, M.K. Seery, S.C. Pillai, J. Phys. Chem. 112, 13563 (2008)Google Scholar
  44. 44.
    M.A. Behnajady, H. Eskandarloo, J. Nanosci. Nanotechnol. 13, 548 (2013)CrossRefGoogle Scholar
  45. 45.
    H.M. Coleman, K. Chiang, R. Amal, Chem. Eng. J. 113, 65 (2005)CrossRefGoogle Scholar
  46. 46.
    T.T.Y. Tan, C.K. Yip, D. Beydoun, R. Amal, Chem. Eng. J. 95, 179 (2003)CrossRefGoogle Scholar
  47. 47.
    O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)CrossRefGoogle Scholar
  48. 48.
    Q. Liu, Y. Cao, W.-L. Dai, J.–F. Deng. Catal. Lett. 55, 87 (1998)CrossRefGoogle Scholar
  49. 49.
    H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, J. Eur. Ceram. Soc. 23, 1457 (2003)CrossRefGoogle Scholar
  50. 50.
    J.G. Yu, X.J. Zhao, J.C. Du, W.M. Chen, J. Sol Gel Sci. Technol. 17, 163 (2000)CrossRefGoogle Scholar
  51. 51.
    Y. Kotani, T. Matoda, A. Marsuda, T. Kogure, M. Tatsumisago, T. Minami, J. Mater. Chem. 11, 2045 (2001)CrossRefGoogle Scholar
  52. 52.
    M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Desalination 278, 10 (2011)CrossRefGoogle Scholar
  53. 53.
    J. Li, J. Xu, W.-L. Dai, H. Li, K. Fan, Appl. Catal. B 85, 162 (2009)CrossRefGoogle Scholar
  54. 54.
    S.S. Hong, C.S. Ju, C.G. Lim, B.H. Ahn, K.T. Lim, G.D. Lee, J. Ind. Eng. Chem. 7, 99 (2001)Google Scholar
  55. 55.
    J. Lu, P. Zhang, A. Li, F. Su, T. Wang, Y. Liu, J. Gong, Chem. Commun. 49, 5817 (2013)CrossRefGoogle Scholar
  56. 56.
    A.R. Gandhe, S.P. Naik, J.B. Fernades, Microporous Mesoporous Mater. 87, 103 (2005)CrossRefGoogle Scholar
  57. 57.
    M. Gopal, W.J. Moberly Chan, L.C. De Jonghe, J. Mater. Sci. 32, 6001 (1997)CrossRefGoogle Scholar
  58. 58.
    H.-I. Hsiang, S.-C. Lin, Ceram. Int. 34, 557 (2008)CrossRefGoogle Scholar
  59. 59.
    C.-C. Wang, J.Y. Ying, Chem. Mater. 11, 3113 (1999)CrossRefGoogle Scholar
  60. 60.
    S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanopart. Res. 6, 193 (2004)CrossRefGoogle Scholar
  61. 61.
    S.H. Song, X. Wang, P. Xiao, Mater. Sci. Eng. B 94, 40 (2002)CrossRefGoogle Scholar
  62. 62.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  63. 63.
    W. Zhao, L. Feng, R. Yang, J. Zheng, X. Li, Synthesis Appl. Catal. B 103, 181 (2011)CrossRefGoogle Scholar
  64. 64.
    M.S. Lee, S.S. Hong, M. Mohseni, J. Mol. Catal. A Chem. 242, 135 (2005)CrossRefGoogle Scholar
  65. 65.
    M.K. Seery, R. George, P. Floris, S.C. Pillai, J. Photochem. Photobiol. A 189, 258 (2007)CrossRefGoogle Scholar
  66. 66.
    M. El-Kemary, Y. Abdel-Moneam, M. Madkour, I. El-Mehasseb, J. Lumin. 131, 570 (2011)CrossRefGoogle Scholar
  67. 67.
    L. Ren, Y.P. Zeng, D. Jiang, Preparation. Catal. Commun. 10, 645 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hamed Eskandarloo
    • 1
  • Alireza Badiei
    • 1
  • Mohammad A. Behnajady
    • 2
  • Morteza Afshar
    • 1
  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran
  2. 2.Department of Chemistry, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations