Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9521–9537 | Cite as

Cu and Fe-containing ZSM-5 zeolites as catalysts for wet peroxide oxidation of organic contaminants: reaction kinetics

  • Oxana P. Taran
  • Andrey N. Zagoruiko
  • Artemiy B. Ayusheev
  • Svetlana A. Yashnik
  • Roman V. Prihod’ko
  • Zinfer R. Ismagilov
  • Vladislav V. Goncharuk
  • Valentin N. Parmon
Article

Abstract

The peroxide oxidation of model substrates (formic acid and phenol) was studied in the presence of copper- and iron-containing catalysts (0.5 % Cu–ZSM-5-30 and 0.65 % Fe–ZSM-5-30). The aim was to develop optimal kinetic models for describing the kinetics of peroxide oxidation. The real kinetics of phenol and formic acid oxidation in the presence of these catalysts at varied reaction parameters (concentrations and temperature) was studied. The copper-containing catalysts were more active to formic acid oxidation than the iron-containing catalyst over all the temperature range studied. The rate of destruction of pollutants decreases with a decrease in the H2O2 concentration and the catalyst weight. The observed rate dependences on the initial substrate concentration appeared to be different for the substrate used. With formic acid, an increase of initial concentration leads to a slight increase in the reaction rate. In the case of phenol peroxide oxidation, the negative order with respect to the substrate concentration was observed. This may be explained by strong inhibition of the reaction rates by phenol and intermediates (hydroquinone, catechol, etc.) of its oxidation. The mathematical modeling of the kinetics was performed for various types of kinetic equations that correspond to different hypotheses on the kinetic reaction scheme. The selected kinetic models based on logical kinetic schemes allowed describing the peroxide oxidation of model substrates at an appropriate accuracy.

Keywords

Zeolites Cu–ZSM-5 Fe–ZSM-5 Wet peroxide oxidation Kinetics 

References

  1. 1.
    L. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, J. Hazard. Mater. 162, 588–606 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Centi, S. Perathoner, Appl. Catal. B Environ. 41, 15–29 (2003)CrossRefGoogle Scholar
  3. 3.
    J. Barrault, M. Abdellaoui, C. Bouchoule, A. Majeste, J.M. Tatibouet, Appl. Catal. B Environ. 27, L225–L230 (2000)CrossRefGoogle Scholar
  4. 4.
    G. Centi, S. Perathoner, T. Torre, Catal. Today 55, 61–69 (2000)CrossRefGoogle Scholar
  5. 5.
    O. Makhotkina, E. Kuznetsova, Appl. Catal. B Environ. 68, 85–91 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Kondru, P. Kumar, S. Chand, J. Hazard. Mat. 166, 342–347 (2009)CrossRefGoogle Scholar
  7. 7.
    N. Phu, T. Hoa, N. Tan, Appl. Catal. B Environ. 34, 267–275 (2001)CrossRefGoogle Scholar
  8. 8.
    E. Kuznetsova, E. Savinov, L. Vostrikova, V. Parmon, Appl. Catal. B Environ. 51, 165–170 (2004)CrossRefGoogle Scholar
  9. 9.
    E. Parkhomchuk, M. Vanina, S. Preis, Catal. Commun. 9, 381–385 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Chen, X. Ma, H. Sun, J. Hazard Mat. 156, 568–575 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Melero, G. Calleja, F. Martínez, R. Molina, K. Lázár, Microporous Mesoporous Mater 74, 11–21 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Valange, Z. Gabelica, M. Abdellaoui, Microporous Mesoporous Mater 30, 177–185 (1999)CrossRefGoogle Scholar
  13. 13.
    I. Stolyarova, I. Kovban’, R. Prikhod’ko, A. Kushko, M. Sychev, V. Goncharuk, Russ. J. Appl. Chem. 80, 746–753 (2007)CrossRefGoogle Scholar
  14. 14.
    O. Pestunova, G. Elizarova, Z. Ismagilov, M. Kerzhentsev, V. Parmon, Catal. Today 75, 219–225 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Maduna Valkaj, A. Katovic, S. Zrnčevič, J. Hazard Mater. 144, 663–667 (2007)CrossRefGoogle Scholar
  16. 16.
    K. Maduna, A. Valkaj, M. Katovic, S. Tomašic, Zrnčevič. Chem. Eng. Technol. 3, 398–403 (2008)CrossRefGoogle Scholar
  17. 17.
    K. Maduna, A. Valkaj, S. Katovic, Zrnčevič. Ind. Eng. Chem. Res. 50, 4390–4397 (2011)CrossRefGoogle Scholar
  18. 18.
    K. Maduna Valkaj, O. Wittine, K. Margeta, T. Granato, A. Katovic, S. Zrnčevič, Pol. J. Chem. Technol. 3, 28–36 (2011)Google Scholar
  19. 19.
    O. Taran, S. Yashnik, A. Ayusheev, A. Piskun, R. Prihod’ko, Z. Ismagilov, V. Goncharuk, V. Parmon, Appl. Catal. B Environ. 140-141, 506–515 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Tatibouet, E. Guerloua, J. Fournier, Top. Catal. 33, 225–232 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Herney-Ramirez, A. Silva, M. Vicente, C. Costa, L. Madeira, Appl. Catal. B Environ. 101, 197–205 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Zelmanov, R. Semiat, Water Res. 42, 492–498 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Klaewkla, S. Kulprathipanja, P. Rangsunvigit, T. Rirksomboon, W. Rathbun, L. Nemeth, Chem. Eng. J. 129, 21–30 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Yashnik, Z. Ismagilov, V. Anufrienko, Catal. Today 110, 310–322 (2005)CrossRefGoogle Scholar
  25. 25.
    E. Sendel, Colorimetric Determination of Traces of Metals (Interscience publishers, INC, New York, 1959)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Oxana P. Taran
    • 1
    • 2
  • Andrey N. Zagoruiko
    • 1
    • 4
    • 5
  • Artemiy B. Ayusheev
    • 1
  • Svetlana A. Yashnik
    • 1
  • Roman V. Prihod’ko
    • 3
  • Zinfer R. Ismagilov
    • 1
  • Vladislav V. Goncharuk
    • 3
  • Valentin N. Parmon
    • 1
    • 4
  1. 1.Boreskov Institute of CatalysisSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Dumansky Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKiev-142Ukraine
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations