Research on Chemical Intermediates

, Volume 41, Issue 12, pp 9439–9449 | Cite as

Comparison of photocatalytic activity for different co-precipitated spinel ferrites

  • Andris Sutka
  • Martins Millers
  • Martins Vanags
  • Urmas Joost
  • Mihael Maiorov
  • Vambola Kisand
  • Rainer Pärna
  • Inna Juhnevica
Article

Abstract

The present work reports the co-precipitation synthesis and photocatalytic activity of MFe2O4 (M = Ni, Zn, Co, Cu, Mg) nanopowders. To compare their properties, all the powders were synthesized under similar synthesis conditions. Their structures and properties were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, nitrogen adsorption–desorption, and vibrating sample magnetometry. The results revealed the formation of single-phase spinel-structure magnetic nanoparticles with particle size <10 nm. All the samples exhibited strong light absorption in the visible range. Among the investigated nanopowders, nickel ferrite showed the highest photocatalytic activity and dye adsorption. The change in the light absorption intensity after 3 h of visible light irradiation of the dye over the NiFe2O4 photocatalyst reached ~70 %.

Keywords

Spinel ferrite Photocatalytic Co-precipitation 

References

  1. 1.
    G. Liu, F. He, J. Zhang, L. Li, F. Li, L. Chen, Y. Huang, Appl. Catal. B Environ. 150–151, 515 (2014)CrossRefGoogle Scholar
  2. 2.
    S.M. Chavan, M.K. Babrekar, S.S. More, K.M. Jadhav, J. Alloys Compd. 507, 21 (2010)CrossRefGoogle Scholar
  3. 3.
    J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Schloemann, S.N. Stitzer, IEEE Trans. Microw. Theory 50, 721 (2002)CrossRefGoogle Scholar
  4. 4.
    A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, J. Phys. Chem. B 103, 6876 (1999)CrossRefGoogle Scholar
  5. 5.
    P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Colloids Surf. A 395, 168 (2012)CrossRefGoogle Scholar
  6. 6.
    I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Šutka, R. Pärna, M. Zamovskis, V. Kisand, G. Mezinskis, J. Kleperis, M. Maiorov, D. Jakovlev, Phys. Status Solidi A 210, 1892 (2013)Google Scholar
  8. 8.
    S. Gyergyek, D. Makovec, A. Kodre, I. Arčon, M. Jagodič, M. Drofenik, J. Nanopart. Res. 12, 1263 (2010)CrossRefGoogle Scholar
  9. 9.
    A. Sutka, G. Mezinskis, A. Lusis, D. Jakovlevs, Sens. Actuator B Chem. 171–172, 204 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Sutka, Sens. Lett. 11, 2010 (2013)CrossRefGoogle Scholar
  11. 11.
    T.P. Sumangala, C. Mahender, B.N. Sahu, N. Venkataramani, S. Prasa, Phys. B (2014). doi:10.1016/j.physb.2014.03.086 Google Scholar
  12. 12.
    A. Šutka, R. Pärna, J. Kleperis, T. Käämbre, I. Pavlovska, V. Korsaks, K. Malnieks, L. Grinberga, V. Kisand, Phys. Scr. 89, 044011 (2014)CrossRefGoogle Scholar
  13. 13.
    R. Valenzuela, Magnetic Ceramics, 1st edn. (Cambridge, Melbourne, 1994)CrossRefGoogle Scholar
  14. 14.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  15. 15.
    P. Cheng, W. Li, T. Zhou, Y. Jin, M. Gu, J. Photochem. Photobiol. C 168, 97 (2004)CrossRefGoogle Scholar
  16. 16.
    P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Colloids Surf. A 395, 168 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Khoshhesab, in: Reflectance IR Spectroscopy, Infrared Spectroscopy—Materials Science, Engineering and Technology, ed. by T. Theophanides, InTech (2012), pp. 1–13Google Scholar
  18. 18.
    Y.V. Kolen’ko, M. Bañobre-López, C. Rodríguez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M.F. Cerqueira, D.Y. Petrovykh, K. Kovnir, O.I. Lebedev, J. Rivas, J. Phys. Chem. C 118, 8691 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Liu, X. Shen, X. Yang, Q. Wang, F. Yang, J. Nanopart. Res. 15, 1679 (2013)CrossRefGoogle Scholar
  20. 20.
    S.K. Shukla, G.K. Parashar, A.P. Mishra, P. Misra, B.C. Yadav, R.K. Shukla, L.M. Bali, G.C. Dubey, Sens. Actuator B Chem. 98, 5 (2004)CrossRefGoogle Scholar
  21. 21.
    A.L. Willis, N.J. Turro, S. O’Brien, Chem. Mater. 17, 5970 (2005)CrossRefGoogle Scholar
  22. 22.
    E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, Chem. Mater. 16, 5689 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Stefanescu, M. Stoia, T. Dippong, O. Stefanescu, P. Barvinschi, Acta Chim. Slov. 56, 379 (2009)Google Scholar
  24. 24.
    A.M. El-Sayed, Ceram. Int. 28, 363 (2002)CrossRefGoogle Scholar
  25. 25.
    M.M. Mallapur, P.A. Shaikh, R.C. Kambale, H.V. Jamadar, P.U. Mahamuni, B.K. Chougule, J. Alloys Compd. 479, 797 (2009)CrossRefGoogle Scholar
  26. 26.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)CrossRefGoogle Scholar
  27. 27.
    C. He, Y. Yu, X. Hu, A. Larbot, Appl. Surf. Sci. 200, 239 (2002)CrossRefGoogle Scholar
  28. 28.
    L. Li, P.A. Salvador, G.S. Rohrer, Nanoscale 6, 24 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Andris Sutka
    • 1
  • Martins Millers
    • 1
  • Martins Vanags
    • 2
  • Urmas Joost
    • 3
    • 4
  • Mihael Maiorov
    • 5
  • Vambola Kisand
    • 3
    • 4
  • Rainer Pärna
    • 3
    • 4
  • Inna Juhnevica
    • 1
  1. 1.Faculty of Materials Sciences and Applied ChemistryRiga Technical UniversityRigaLatvia
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  3. 3.Institute of PhysicsUniversity of TartuTartuEstonia
  4. 4.Estonian Nanotechnology Competence CenterTartuEstonia
  5. 5.Institute of PhysicsUniversity of LatviaSalaspilsLatvia

Personalised recommendations