Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8839–8854 | Cite as

Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation

  • D. Sánchez-Martínez
  • D. B. Hernández-Uresti
  • Leticia M. Torres-Martinez
  • S. Mejia-Rosales


BiVO4 with monoclinic-type structure were successfully synthesized by microwave-assisted hydrothermal method (BiMH) and hydrothermal reaction (BiH500) in aqueous medium. The materials were characterized by X-ray diffraction, scanning electron microscopy, Barrett–Emmett–Teller technique, diffuse reflectance spectroscopy, and UV–Vis spectroscopy. The photocatalytic activity of samples was evaluated by the degradation of different pollutants such as xanthene (rhodamine B), indigoids (indigo carmine), and antibiotics (tetracycline) under simulated sun-light irradiation. The relation among surface area, morphology, particle size, charge recombination, and photocatalytic performance of the powders was also discussed. The degradation of the antibiotic solution (TC) over BiVO4 photocatalyst was quickly reached for with half-life time (t 1/2) minor than 12 min. On the other hand, in the case of organic dyes (RhB and IC) the best results were t 1/2 = 79 and 150 min under simulated sun-light irradiation, respectively. BiVO4, had a good stability, did not present photocorroded under irradiation. The degree of mineralization of the organic compounds was determined by total organic content (TOC) analysis, which revealed that mineralization by the action of BiMH is feasible in 83 % (RhB), 58 % (IC), and 50 % (TC) after 96 h of irradiation.


BiVO4 Microwave-assisted hydrothermal method Heterogeneous photocatalysis Tetracycline 



We wish to thank the Universidad Autónoma de Nuevo León (UANL) for its invaluable support through the Project PAICYT 2012 and to CONACYT for support the Project “CB2013 No. 220792”, Grant “Retención No. 206863”, “CB2013 No. 220802” and SEP for support of Project PROMEP/103.5/13/6644 UANL-PTC-744.


  1. 1.
    N.M. Roden, E.V. Sargent, G.T. DiFerdinando Jr, Hum. Ecol. Risk Assess. Int. J. 21(1), 280–295 (2015)CrossRefGoogle Scholar
  2. 2.
    A.K. Venkatesan, R.U. Halden, Sci. Rep. 4, 3731 (2014)CrossRefGoogle Scholar
  3. 3.
    C.G. Daughton, T.A. Ternes, Environ. Health Perspect. 107, 907–938 (1999)CrossRefGoogle Scholar
  4. 4.
    A.J. Watkinson, E.J. Murbyc, S.D. Costanzoa, Water Res. 41, 4164–4176 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Xia, R. Jia, F. Feng, K. Xie, H. Li, D. Jing, X. Xu, Bioresour. Technol. 106, 36–43 (2012)CrossRefGoogle Scholar
  6. 6.
    B. Li, T. Zhang, Chemosphere 83, 1284–1289 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Sarkar, S. Ali, L. Rehmann et al., J. Hazard. Mater. 278, 16–24 (2014)CrossRefGoogle Scholar
  8. 8.
    I. Michael, E. Hapeshi, C. Michael, A.R. Varela et al., Water Res. 46, 5621–5634 (2012)CrossRefGoogle Scholar
  9. 9.
    E.S. Elmolla, M. Chaudhuri, Desalination 272, 218–224 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Choi, H. Lee, Y. Choi, S. Kim et al., Appl. Catal. B Environ. 147, 8–16 (2014)CrossRefGoogle Scholar
  11. 11.
    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)CrossRefGoogle Scholar
  12. 12.
    Z. Liu, X. Dong, Z. Liu, Q. Liu, Adv. Mater. Res. 807, 402–409 (2013)Google Scholar
  13. 13.
    M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38(6), 1261–1277 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Trabelsi, M. Khadhraouia, O. Hentatia, M. Ksibia, Toxicol. Environ. Chem. 95, 543–555 (2013)CrossRefGoogle Scholar
  15. 15.
    J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, Energy Environ. Sci. 5, 6321–6327 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Gómez-Solís, D. Sánchez-Martínez, I. Juárez-Ramírez, A. Martínez-de la Cruz, L.M. Torres-Martínez, J. Photochem. Photobiol. A Chem. 262, 28–33 (2013)CrossRefGoogle Scholar
  17. 17.
    F. Zhang, K. Maeda, T. Takata, T. Hisatomi, K. Domen, Catal. Today 185, 253–258 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Y. Zhu, J. Yu, D. Yang, T.W. Ng, P.K. Wong, C.Y. Jimmy, Nanoscale 5, 6307–6310 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Cheng, J. Chen, X. Yan, Z. Zheng, Q. Xue, RSC Adv. 3, 20606–20612 (2013)CrossRefGoogle Scholar
  20. 20.
    R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37, 722–732 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Dragomir, I. Arčona, S. Gardonio, M. Valant, Acta Mater. 61, 1126–1135 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173, 194–199 (2010)CrossRefGoogle Scholar
  23. 23.
    B Cheng, W Wang, L Shi, J Zhang, J Ran, H Yu (2012) Int J Photoenergy. Article ID 797968Google Scholar
  24. 24.
    S. Mozia, A. Heciak, A.W. Morawski, Appl. Catal. B Environ. 104, 21–29 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Hou, Y. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, J. Mater. Chem. 20, 2418–2423 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, CrystEngComm. 12, 1754–1758 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Liu, J. Ma, Z. Liu, C. Dai, Z. Song, Y. Sun, J. Fang, J. Zhao, Ceram. Int. 36, 2073–2077 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Obregón, A. Caballero, G. Colón, Appl. Catal. B Environ. 117–118, 59–66 (2012)CrossRefGoogle Scholar
  30. 30.
    Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K.K. Fung, T. Ma, A. Hagfeldt, N. Wang, Chem. Mater. 25, 1000–1012 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Ma, W.-H. Lia, J.-H. Luo, Mater. Lett. 102–103, 65–67 (2013)CrossRefGoogle Scholar
  32. 32.
    W. Shi, Y. Yan, X. Yan, Chem. Eng. J. 215–216, 740–746 (2013)CrossRefGoogle Scholar
  33. 33.
    L. Zhang, G. Tan, S. Wei, H. Ren, A. Xia, Y. Luo, Ceram. Int. 39, 8597–8604 (2013)CrossRefGoogle Scholar
  34. 34.
    G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Ceram. Int. 40, 8597–8604 (2014)Google Scholar
  35. 35.
    G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, ACS Appl. Mater. Interfaces 5, 5186–5193 (2013)CrossRefGoogle Scholar
  36. 36.
    D.B. Hernández-Uresti, A. Martínez-de la Cruz, J.A. Aguilar-Garib, Catal. Today 212, 70–74 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys. 117, 7313–7318 (2002)CrossRefGoogle Scholar
  38. 38.
    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, J. Mol. Catal. A: Chem. 252, 120–124 (2006)CrossRefGoogle Scholar
  39. 39.
    W. Liu, Y. Yu, L. Cao, G. Su, X. Liu, L. Zhang, Y. Wang, J. Hazard. Mater. 181, 1102–1108 (2010)CrossRefGoogle Scholar
  40. 40.
    T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswarin, Ceram. Int. 40, 13159–13167 (2014)CrossRefGoogle Scholar
  41. 41.
    X. Zhu, Q. Hang, Z. Xing et al., J. Am. Ceram. Soc. 94, 2688–2693 (2011)CrossRefGoogle Scholar
  42. 42.
    C. Hao, Fusheng Wen, J. Xiang et al., Mater. Res. Bull. 50, 369–373 (2014)CrossRefGoogle Scholar
  43. 43.
    H.H. Mohamed, D.W. Bahnemann, Appl. Catal. B Environ. 128, 91–104 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, S. Dash, Mater. Sci. Semicond. Process. 21, 122–131 (2014)CrossRefGoogle Scholar
  45. 45.
    C. Li, G. Chen, J. Sun, Y. Feng et al., Appl. Catal. B Environ. 163, 415–423 (2015)CrossRefGoogle Scholar
  46. 46.
    C. Li, G. Chen, J. Sun, H. Dong et al., Appl. Catal. B Environ. 160–161, 383–389 (2014)CrossRefGoogle Scholar
  47. 47.
    C. Yu, K. Yang, J.C. Yu, F. Cao, X. Li, X. Zho, J. Alloys Compounds 50, 4547–4552 (2011)CrossRefGoogle Scholar
  48. 48.
    Y. Qu, W. Zhou, Z. Ren, S. Du, X. Meng et al., J. Mater. Chem. 22, 16471–16476 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. Sánchez-Martínez
    • 1
  • D. B. Hernández-Uresti
    • 2
    • 3
  • Leticia M. Torres-Martinez
    • 1
  • S. Mejia-Rosales
    • 2
    • 3
  1. 1.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias Físico - MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Centro de Innovación, Investigación y Desarrollo en Ingeniería y TecnologíaUANL Nueva Carretera al Aeropuerto Internacional Monterrey Km 10-PIITApodacaMexico

Personalised recommendations