Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8735–8745 | Cite as

Reaction of butyraldehyde formation from ethylene and ethylene oxide on ZSM-5 surface

  • Mikhail V. Parfenov
  • Sergei E. Malykhin
  • Larisa V. Pirutko
  • Alexander S. Kharitonov
  • Eugeny V. StarokonEmail author


A recently discovered surface reaction of ethylene oxide (EO) with ethylene yielding butyraldehyde (BA) was studied on ZSM-5 zeolites with different contents of Al, Na, and Fe in the temperature range of −25 to 100 °C. Products formed on a zeolite as a result of EO and ethylene transformations were extracted from the surface and identified using gas chromatography, gas chromatography–mass spectrometry, and nuclear magnetic resonance. In addition to BA, the other major reaction products are acetaldehyde and dioxane. Product distribution strongly depends on the composition of the zeolite samples and experimental conditions. Varying of the Al content in the zeolites as well as their temperature pretreatment showed that a key role in the formation of BA play dehydroxylated Al-contained sites. Possible transformations of EO and ethylene on the zeolite were analyzed by quantum-chemical calculations.


Butyraldehyde formation Ethylene oxide Ethylene ZSM-5 zeolite Product extraction 



We thank V.A. Utkin and I.E. Soshnikov for the GC–MS and 1H NMR analyses, G.I. Panov and Bedilo A.F. for useful discussions. The work was supported by RFBR Project No. 14-03-31402 mol_a.


  1. 1.
    S. Rebsdat, D. Mayer, Kirk-Othmer Encyclopedia Chemical Technology (Wiley, Hoboken, 2007)Google Scholar
  2. 2.
    R.E. Parker, N.S. Isaacs, Chem. Rev. 59, 737 (1959)CrossRefGoogle Scholar
  3. 3.
    E.V. Starokon, M.V. Parfenov, L.V. Pirutko, I.E. Soshnikov, G.I. Panov, J. Catal. 309, 453 (2014)CrossRefGoogle Scholar
  4. 4.
    G.I. Panov, K.A. Dubkov, E.A. Paukshtis, in Catalysis by unique metal ion structures in solid matrices, ed. by G. Centi, B. Wichterlowa, A. Bell (Kluwer Academic Publishers, Berlin, 2001), pp. 149–163CrossRefGoogle Scholar
  5. 5.
    B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, J. Catal. 225, 300 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Ates, A. Reitzmann, G. Waters, Appl. Catal. B Environ. 119–120, 329 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Yuranov, D.A. Bulushev, A. Renken, L. Kiwi-Minsker, Appl. Catal. A Gen. 319, 128 (2007)CrossRefGoogle Scholar
  8. 8.
    E. Berrier, O. Ovsitser, E.V. Kondratenko, M. Schwidder, W. Grünert, A. Brückner, J. Catal. 249, 67 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Li, E.A. Pidko, R.A. van Santen, Z. Feng, C. Li, E.J.M. Hensen, J. Catal. 284, 194 (2011)CrossRefGoogle Scholar
  10. 10.
    E.V. Starokon, M.V. Parfenov, L.V. Pirutko, S.I. Abornev, G.I. Panov, J. Phys. Chem. C 115, 2155 (2011)CrossRefGoogle Scholar
  11. 11.
    V.I. Sobolev, K.A. Dubkov, O.V. Panna, G.I. Panov, Catal. Today 24, 251 (1995)CrossRefGoogle Scholar
  12. 12.
    P.P. Knops-Gerrits, W.A. Goddard III, J. Mol. Catal. A. 166, 135 (2001)CrossRefGoogle Scholar
  13. 13.
    M.H. Groothaert, P.J. Smeets, B.F. Sels, P.A. Jacobs, R.A. Schoonheydt, J. Am. Chem. Soc. 127, 1394 (2005)CrossRefGoogle Scholar
  14. 14.
    L.M. Kustov, V.B. Kazansky, S. Beran, L. Kubelkova, P. Jiru, J. Phys. Chem. 91, 5247 (1987)CrossRefGoogle Scholar
  15. 15.
    M. Hunger, Catal. Rev. 39, 345 (1997)CrossRefGoogle Scholar
  16. 16.
    E.G. Derouane, J.C. Védrine, R.R. Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F.R. Ribeiro, Catal. Rev. 55, 454 (2013)CrossRefGoogle Scholar
  17. 17.
    Gaussian 09, Revision D.01, M.J. Frisch et al. (Gaussian, Inc., Wallingford CT, 2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mikhail V. Parfenov
    • 1
  • Sergei E. Malykhin
    • 1
    • 2
  • Larisa V. Pirutko
    • 1
  • Alexander S. Kharitonov
    • 1
  • Eugeny V. Starokon
    • 1
    Email author
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations