Research on Chemical Intermediates

, Volume 41, Issue 11, pp 8681–8698 | Cite as

Study of adsorption of Cu(II) ions from aqueous solution by surface-modified Eucalyptus globulus seeds in a fixed-bed column: experimental optimization and mathematical modeling

  • P. Senthil KumarEmail author
  • A. S. L. Sai Deepthi
  • R. Bharani
  • G. Rakkesh


In this study we investigated removal of Cu(II) ions from synthetic wastewater by use of surface-modified Eucalyptus globulus seeds, a low-cost adsorbent, in a fixed bed column. The surface-modified adsorbent was characterized by FTIR and SEM analysis. Column experiments were conducted to study the effect of such operating conditions as bed depth, concentration of influent Cu(II) ions, and flow rate on breakthrough curves and adsorption capacity. The applicability of different mathematical models, the Thomas, Adams–Bohart, Yoon–Nelson, and bed depth service time (BDST) models, was studied by regression analysis, and the model variables were estimated. The experimental data were examined by comparing experimental breakthrough curves with those from the model. The experimental data obtained were in good agreement with the Adams–Bohart model; for the Thomas, Yoon–Nelson and BDST models, low correlation coefficients were obtained. These results thus indicated that the Adams–Bohart model is best for simulation of breakthrough curves under different conditions.


Adsorption Surface modified Eucalyptus globulus seeds Cu(II) ions Fixed-bed column Regression analysis 



The authors are grateful for the financial support from the SSN Trust, Chennai.


  1. 1.
    C.S. Zhu, L.P. Wang, W.B. Chen, J. Hazard. Mater. 168, 739 (2009)CrossRefGoogle Scholar
  2. 2.
    C.M. Futalan, C.-C. Kan, M.L. Dalida, C. Pascua, M.-W. Wan, Carbohydr. Polym. 83, 697 (2011)CrossRefGoogle Scholar
  3. 3.
    P. SenthilKumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Desalination 266, 63 (2011)CrossRefGoogle Scholar
  4. 4.
    BIS, Methods of sampling and test (physical and chemical) for water and waste water: part 42 copper (first revision), IS No. 3025 (Part 42) (1992)Google Scholar
  5. 5.
    A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, Y.Y. Chii, B.M. Siddique, Desalination 247, 636 (2009)CrossRefGoogle Scholar
  6. 6.
    B.A. Fil, R. Boncukcuoglu, A.E. Yilmaz, S. Bayar, Korean J. Chem. Eng. 29, 1232 (2012)CrossRefGoogle Scholar
  7. 7.
    B.A. Fil, A.E. Yilmaz, R. Boncukcuoglu, S. Bayar, Bulg. Chem. Commun. 44, 201 (2012)Google Scholar
  8. 8.
    P.S. Kumar, C. Senthamarai, A. Durgadevi, Environ. Prog. Sustain. Energy 33, 28 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Horsfall Jr., A.A. Abia, A.I. Spiff, Bioresour. Technol. 97, 283 (2006)CrossRefGoogle Scholar
  10. 10.
    T. Altun, E. Pehlivan, Clean Soil Air Water 35, 601 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Sciban, B. Radetic, Z. Kevresan, M. Klasnja, Bioresour. Technol. 98, 402 (2007)CrossRefGoogle Scholar
  12. 12.
    X. Wang, Z.Z. Li, C. Sun, Desalination 235, 146 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Sciban, M. Klasnja, B. Skrbic, Desalination 229, 170 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Muhamad, H. Doan, A. Lohi, Chem. Eng. J. 158, 369 (2010)CrossRefGoogle Scholar
  15. 15.
    Z.-H. Yao, J.-H. Qi, L.H. Wang, J. Hazard. Mater. 174, 137 (2010)CrossRefGoogle Scholar
  16. 16.
    A.R. Iftikhar, H.N. Bhatti, M.A. Hanif, R. Nadeem, J. Hazard. Mater. 161, 941 (2009)CrossRefGoogle Scholar
  17. 17.
    J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. da Cunha, N.F. Cardoso, J.L. Brasil, S.L.P. Dias, J. Hazard. Mater. 162, 270 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Jiang, H. Pang, B. Liao, J. Hazard. Mater. 164, 1 (2009)CrossRefGoogle Scholar
  19. 19.
    X. Luo, Z. Deng, X. Lin, C. Zhang, J. Hazard. Mater. 187, 182 (2011)CrossRefGoogle Scholar
  20. 20.
    G.S. Bohart, E.Q. Adams, J. Chem. Soc. 42, 523 (1920)CrossRefGoogle Scholar
  21. 21.
    J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, J. Hazard. Mater. 125, 211 (2005)CrossRefGoogle Scholar
  22. 22.
    U. Kumar, M. Bandyopadhyay, J. Hazard. Mater. B129, 253 (2006)CrossRefGoogle Scholar
  23. 23.
    Z. Aksu, F. Gonen, Process Biochem. 39, 599 (2004)CrossRefGoogle Scholar
  24. 24.
    M. Trgo, N.V. Medvidovic, J. Peric, Ind. J. Chem. Technol. 18, 123 (2011)Google Scholar
  25. 25.
    A.A. Ahmad, B.H. Hameed, J. Hazard. Mater. 175, 298 (2010)CrossRefGoogle Scholar
  26. 26.
    K.S. Rao, S. Ananad, P. Venkateswarlu, J. Ind. Eng. Chem. 17, 174 (2011)CrossRefGoogle Scholar
  27. 27.
    H.C. Thomas, J. Am. Chem. Soc. 66, 1466 (1944)Google Scholar
  28. 28.
    T.E. Kose, N. Ozturk, J. Hazard. Mater. 152, 744 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Qaiser, A.R. Saleemi, M. Umar, J. Hazard. Mater. 166, 998 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Ma, F. Shi, X. Zheng, J. Ma, C. Gao, J. Hazard. Mater. 185, 1073 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Memon, N. Memon, S. Memon, Y. Latif, J. Hazard. Mater. 186, 1696 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.H. Yoon, J.H. Nelson, Am. Ind. Hyg. Assoc. J. 45, 509 (1984)CrossRefGoogle Scholar
  33. 33.
    M. Zhao, J.R. Duncan, Biotechnol. Lett. 20, 37 (1998)CrossRefGoogle Scholar
  34. 34.
    N. Sankararamakrishnan, P. Kumar, V.S. Chauhan, Sep. Purif. Technol. 63, 213 (2008)CrossRefGoogle Scholar
  35. 35.
    Z. Saadi, R. Saadi, R. Fazaeli, J. Nanostruct. Chem. 3, 48 (2013)CrossRefGoogle Scholar
  36. 36.
    R.A. Hutchins, Chem. Eng. 80, 133 (1973)Google Scholar
  37. 37.
    V.C.T. Costodes, H. Fauduet, C. Porte, Y.-S. Ho, J. Hazard. Mater. B123, 135 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • P. Senthil Kumar
    • 1
    Email author
  • A. S. L. Sai Deepthi
    • 1
  • R. Bharani
    • 1
  • G. Rakkesh
    • 1
  1. 1.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations