Research on Chemical Intermediates

, Volume 41, Issue 9, pp 6707–6720 | Cite as

Use of partial least-squares discriminant analysis to study the effects of gradual scale-up of culture, and optimization of bioreactor angle and aeration volume on culture of Panax quinquefolium L. adventitious roots in a 5-L balloon-type bubble bioreactor

  • Qin Wang
  • Juan Wang
  • Jing Li
  • Shuli Man
  • Wenyuan Gao


Gradual scale-up culture of adventitious roots of Panax quinquefolium L. has been successfully achieved.Production of ginsenosides and polysaccharides was enhanced in a bioreactor compared with flask-type culture. The conditions for culture of adventitious roots were optimized.Partial least-squares discriminant analysis of the results showed growth rate and amounts of some compounds correlated positively with use of a 5-L balloon-type bubble bioreactor at an angle of 90° and with an aeration volume of 0.5 v/v/min.


Panax quinquefolium PLS-DA Polysaccharide Ginsenoside Adventitious roots Bioreactor 



Murashige and Skoog (1962)


2,4-Dichlorophenoxyacetic acid


Indole-3-butyric acid


α-Naphthylacetic acid


Balloon-type bubble bioreactor


Dry weight


Fresh weight


Electrical conductivity


Specific oxygen uptake ratio


Partial least-squares discriminant analysis



This research was funded by Tianjin University Innovation Fund, China (2013XQ0046) and the Central Significant Increase or Decrease Program, China (ID: 20603020302).


  1. 1.
    J.T.A. Proctor, W.G. Bailey, Hort Rev. 9, 187–236 (1987)Google Scholar
  2. 2.
    J.R. Harlan, J.M.J. de Wet, Taxonomy. 20, 509–517 (1971)CrossRefGoogle Scholar
  3. 3.
    A.S. Atelle, J.A. Wu, C.S. Yuan, Biochem. Pharmacol. 58, 1685–1693 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Lee, E. Jung, J. Lee, S. Huh, J. Kim, M. Park, J. So, J. Ham, K. Jung, Ch-G Hyun, Y.S. Kim, D. Park, J. Ethnopharmacol. 109, 29–34 (2007)CrossRefGoogle Scholar
  5. 5.
    S.H. Lee, B.H. Jung, S.Y. Kim, E.H. Lee, B.C. Chung, Pharmacol. Res. 54, 46–49 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Mathur, A.K. Mathur, R.S. Sangwan, A. Gangwar, G.C. Uniyal, Genet. Resour. Crop Evol. 50, 245–252 (2003)CrossRefGoogle Scholar
  7. 7.
    E.W. Court, Medicinal and Aromatic Plants: Industrial Profiles, vol. 15 (Harwood Academic Publishers, Amsterdam, 2000)Google Scholar
  8. 8.
    M.B. Ali, K.W. Yu, E.J. Hahn, K.Y. Paek, Plant Sci. 169, 83–92 (2005)CrossRefGoogle Scholar
  9. 9.
    C.S. Yuan, A.S. Attele, J.A. Wu, T.K. Lowell, Z. Gu, Y. Lin, Am. J. Chin. Med. 27, 331–338 (1999)CrossRefGoogle Scholar
  10. 10.
    C.Z. Wang, H.H. Aung, B. Zhang, S. Sun, X.L. Li, H. He, J.T. Xie, T.C. He, W. Du, C.S. Yuan, Anticancer Res. 28, 2545–2551 (2008)Google Scholar
  11. 11.
    Y.H. Zhang, J.J. Zhong, J.T. Yu, Biotechnol. Lett. 17, 1347–1350 (1995)Google Scholar
  12. 12.
    E. Kochan, M. Wasiela, M. Sienkiewicz, In Vitro Cell Dev. Biol. Plant. 49, 24–29 (2013)CrossRefGoogle Scholar
  13. 13.
    W.Y. Gao, W. Jia, H.Q. Duan, P.G. Xiao, China J. Chin. Mater. Medica. 28, 385–390 (2003)Google Scholar
  14. 14.
    Y.S. Kim, E.C. Yeung, E.J. Hahn, K.Y. Paek, Biotechnol. Lett. 29, 1789–1792 (2007)CrossRefGoogle Scholar
  15. 15.
    E.E. Uchendu, G. Paliyath, D.C.W. Brown, P.K. Saxena, In Vitro Cell Dev. Biol. Plant. 47, 710–718 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Wang, W.Y. Gao, J. Zhang, T. Huang, T.T. Wen, L.M. Zhang, L.Q. Huang, Cells cultures. Plant Growth Regul. 63, 217–223 (2011)CrossRefGoogle Scholar
  17. 17.
    H. Liu, J. Wang, W.Y. Gao, Q. Wang, L.M. Zhang, S.L. Man, Acta Physiol. Plant 36, 713–719 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Huang, W.Y. Gao, J. Wang, Y.X. Zhao, L.Q. Huang, C.X. Liu, Minerva Biotecnol. 22, 39–45 (2010)Google Scholar
  19. 19.
    J.H. Chen, M.Y. Xie, S.P. Nie, Y.X. Wang, R.H. Peng, J. Food Sci. Biotechnol. 24, 72–76 (2005)Google Scholar
  20. 20.
    J. Wang, W.Y. Gao, B.M. Zuo, H. Liu, L.Q. Huang, Plant Growth Regul. 67, 101–105 (2012)CrossRefGoogle Scholar
  21. 21.
    S.M. Choi, S.H. Son, S.R. Yun, O.W. Kwon, J.H. Seon, K.Y. Paek, Plant Cell, Tissue Organ Cult. 62, 187–193 (2000)CrossRefGoogle Scholar
  22. 22.
    E. Kochan, G. Szyman´ska, P. Szymczyk, Acta Physiol. Plant. 36, 613–619 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Thimmaraju, N. Bhagyalakshmi, M.S. Narayan, G.A. Ravishankar, Process Biochem. 38, 1069–1076 (2003)CrossRefGoogle Scholar
  24. 24.
    M. Jurascík, M. Blažej, J. Annus, J. Markos, Chem. Eng. J. 125, 81–87 (2006)CrossRefGoogle Scholar
  25. 25.
    E. Kochan, M. Wasiela, M. Sienkiewicz, In Vitro Cell. Dev. Biol.—Plant. 49, 24–29 (2013)CrossRefGoogle Scholar
  26. 26.
    K.S. Shin, H.N. Murthy, J.Y. Ko, K.Y. Paek, Biotechnol. Lett. 24, 2067–2069 (2002)CrossRefGoogle Scholar
  27. 27.
    K. Kusakari, M. Yokoyama, S. Inomata, Y. Gozu, C. Katagir, Y. Sugimoto, J. Biosci. Bioeng. 113, 99–105 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Dong, W.Y. Gao, S.L. Man, B.M. Zuo, J. Wang, L.Q. Huang, P.G. Xiao, Acta Physiol. Plant. 35, 1497–1501 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Chattopadhyay, S. Farkya, A.K. Srivastava, V.S. Bisaria, Biotechnol. Bioprocess Eng. 7, 138–149 (2002)CrossRefGoogle Scholar
  30. 30.
    M.A. Baque, E.J. Lee, K.Y. Paek, Plant Cell Rep. 29, 685–694 (2010)CrossRefGoogle Scholar
  31. 31.
    J.J. Zhong, M. Yoshida, K. Fujiyama, T. Seki, T. Yoshida, J. Ferment Bioengr. 75, 299–303 (1993)CrossRefGoogle Scholar
  32. 32.
    C.S. Jeong, D. Chakrabarty, E.J. Hahn, H.L. Lee, K.Y. Paek, Biochem. Eng. J. 27, 252–263 (2006)CrossRefGoogle Scholar
  33. 33.
    E.J. Lee, M. Mobin, E.J. Hahn, K.Y. Paek, J. Plant Biol. 49, 427–431 (2006)CrossRefGoogle Scholar
  34. 34.
    J.Y. Min, H.Y. Jung, S.M. Kang, Y.D. Kim, Y.M. Kang, D.J. Park, D.T. Prasad, M.S. Choi, Bioresour. Technol. 98, 1748–1753 (2007)CrossRefGoogle Scholar
  35. 35.
    J. Wang, W.Y. Gao, Q. Wang, S.L. Man, L.M. Zhang, Res. Chem. Intermed. (2013). doi: 10.1007/s11164-013-1215-z Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Fermentation Microbiology, Ministry of EducationTianjin University of Science and TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations