Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 8, pp 5565–5586 | Cite as

Micellar catalysis of quinquivalent vanadium oxidation of methanol to formaldehyde in aqueous medium

  • Pintu Sar
  • Aniruddha Ghosh
  • Debranjan Ghosh
  • Bidyut Saha
Article

Abstract

The kinetics of oxidation of methanol by quinquivalent vanadium in aqueous sulfuric acid medium has been studied at 313 K under pseudo-first-order condition by UV–vis spectrophotometry. Nonfunctional sodium dodecyl sulfate (SDS) surfactant solution was used as a microheterogeneous micellar catalyst. The reaction rate and selectivity strongly depend on the chosen surfactant, and in some cases also on the surfactant concentration. The critical micelle concentration (CMC) values of the SDS surfactant in aqueous medium as well as in the presence of the substrate methanol were determined by the conductivity method, matching well with the kinetically determined CMC value. SDS was found to be an excellent catalyst for oxidation of methanol by vanadium(V) in aqueous sulfuric acid medium, leading to the corresponding oxidized product (formaldehyde), which was detected by 1H nuclear magnetic resonance (NMR). The micellar catalysis by SDS is due to strong binding of the cationic oxidant with the anionic surfactant. Formation of aggregates by the catalytic surfactant was studied using optical microscopy, and the change in shape and size of the aggregates in the reaction condition was studied by using scanning electron microscopy and the dynamic light scattering method. Mechanisms for this oxidation reaction in aqueous medium as well as with micellar catalyst are proposed, being completely supported by our experimental results.

Keywords

Methanol Quinquivalent vanadium Sodium dodecyl sulfate (SDS) Critical micelle concentration (CMC) Micellar catalysis Formaldehyde 

Abbreviation

d

z-Averaged hydrodynamic mean diameter

κ

Specific conductivity

CT

Total surfactant concentration

λ

Absorption wavelength

CMC

Critical micelle concentration

CAC

Critical aggregation concentration

kobs

Pseudo-first-order rate constant

E°

Standard reduction potential

SDS

Sodium dodecyl sulfate

CaDS

Calcium dodecyl sulfate

TMS

Tetramethylsilane

t1/2

Half-life of oxidation

A

Absorbance

β

Interaction parameter

Notes

Acknowledgments

The authors would like to thank UGC, New Delhi and CSIR, New Delhi for providing financial help in the form of research grant and fellowship, The University of Burdwan, Burdwan, India for providing infrastructural facilities, and Mr. Atanu Basak of the Department of Chemistry, Visva-Bharati, Santiniketan, India for his kind help.

Supplementary material

11164_2014_1682_MOESM1_ESM.doc (162 kb)
Supplementary material 1 (DOC 162 kb)

References

  1. 1.
    J. Xie, H. Wang, H. Bai, P. Yang, M. Shi, P. Guo, C. Wang, W. Yang, H. Song, ACS Appl. Mater. Interfaces 4, 2891–2896 (2012)CrossRefGoogle Scholar
  2. 2.
    K.M. Gangotri, P.P. Solanki, Energy Sources Part A 35, 1467–1475 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. Guo, S. Harirchian-Saei, C.M.S. Izumi, M.G. Moffitt, ACS Nano 5, 3309–3318 (2011)CrossRefGoogle Scholar
  4. 4.
    X.B. Xiong, A. Falamarzian, S. Garg, A. Lavasanifar, J. Control. Release 155, 248–261 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Zhang, Z. Zhang, F. Shi, J. Ding, C. Xiao, X. Zhuang, C. He, L. Chen, X. Chen, Soft Matter 9, 2224–2233 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Pradeep, S. Anshup, Thin Solid Films 517, 6441–6478 (2009)CrossRefGoogle Scholar
  7. 7.
    J.M. Serrano, M. Silva, Electrophoresis 28, 3242–3249 (2007)CrossRefGoogle Scholar
  8. 8.
    T. Dwars, E. Paetzold, G. Oehme, Angew. Chem. Int. Ed. 44, 7174–7199 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Ghosh, R. Saha, S.K. Ghosh, K. Mukherjee, B. Saha, Spectrochim. Acta Part A 109, 55–67 (2013)CrossRefGoogle Scholar
  10. 10.
    B.H. Lipshutz, S. Ghorai, W.W.Y. Leong, B.R. Taft, J. Org. Chem. 76, 5061–5073 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Ghosh, R. Saha, P. Sar, B. Saha, J. Mol. Liq. 186, 122–130 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Saha, A. Ghosh, P. Sar, I. Saha, S.K. Ghosh, K. Mukherjee, B. Saha, Spectrochim. Acta Part A 116, 524–531 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Akram, D. Kumar, Kabir-ud-Din, Colloids Surf. B 94, 220–225 (2012)CrossRefGoogle Scholar
  14. 14.
    A.D. Groot, I.R. White, M.A. Flyvholm, G. Lensen, P.J. Coenraads, Contact Dermat. 62, 18–31 (2010)CrossRefGoogle Scholar
  15. 15.
    S.V.W.B. Oliveira, E.M. Moraes, M.A.T. Adorno, M.B.A. Varesche, E. Foresti, M. Zaiat, Water Res. 38, 1685–1694 (2004)CrossRefGoogle Scholar
  16. 16.
    M.A. Moteleb, M.T. Suidan, J. Kim, S.W. Maloney, Water Res. 36, 3775–3785 (2002)CrossRefGoogle Scholar
  17. 17.
    International Agency for Research on Cancer, 88 (2008) 46–331Google Scholar
  18. 18.
    T. Yang, J.H. Lunsford, J. Catal. 103, 55–64 (1987)CrossRefGoogle Scholar
  19. 19.
    C. Bolm, V. Lecomte, Adv. Synth. Catal. 347, 1666–1672 (2005)CrossRefGoogle Scholar
  20. 20.
    S.M. Williams, K.R. Rodriguez, S.T. Kennedy, A.D. Stafford, S.R. Bishop, U.K. Lincoln, J.V. Coe, J. Phys. Chem. B 108(2004), 1–11833 (1837)Google Scholar
  21. 21.
    D.R. Justes, N.A. Moore, A.W. Castleman Jr, J. Phys. Chem. B 108, 3855–3862 (2004)CrossRefGoogle Scholar
  22. 22.
    N. Koivikko, T. Laitinen, S. Ojala, S. Pitkaaho, A. Kucherov, R.L. Keiski, Appl. Catal. B 103, 72–78 (2011)CrossRefGoogle Scholar
  23. 23.
    A.N. Palaniappan, S. Vaideki, S. Srinivasan, C. Raju, Der Chemica Sinica 3, 192–197 (2012)Google Scholar
  24. 24.
    S. Wenyu, Z. Ronghui, L. Yanwei, X. Junran, Chin. J. Inorg. Chem. 25 (2005) 77. (http://www.chemistrymag.org/cji/2005/07b077pe.htm)
  25. 25.
    M.P. Rao, B. Sethuram, T.N. Rao, Proc. Indian Acad. Sci. A 55, 858–863 (1989)Google Scholar
  26. 26.
    K.K. Sengupta, T. Samanta, S. Basu, Tetrahedron 41, 205–208 (1985)CrossRefGoogle Scholar
  27. 27.
    B. Saha, C. Orvig, Coord. Chem. Rev. 254, 2959–2972 (2010)CrossRefGoogle Scholar
  28. 28.
    P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth, Environ. Chem. Lett. 8, 199–216 (2010)CrossRefGoogle Scholar
  29. 29.
    N. D. Chasteen (ed.), Vanadium in biological systems. (Kluwer Academic, Boston, 1990Google Scholar
  30. 30.
    D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 104, 849–902 (2004)CrossRefGoogle Scholar
  31. 31.
    H. F. Hsu, C. L. Su, N. O. Gopal, C. C. Wu, W. C. Chu, Y. F. Tsai, Y. H. Chang, Y. H. Liu, T. S. Kuo, S. C. Ke, Eur. J. Inorg. Chem. (2006) 1161–1167Google Scholar
  32. 32.
    K.H. Thompson, J.H. McNeill, C. Orvig, Chem. Rev. 99, 2561–2571 (1999)CrossRefGoogle Scholar
  33. 33.
    D. Rehder, Future Med. Chem. 4, 1823–1837 (2012)CrossRefGoogle Scholar
  34. 34.
    T. Hirao, Chem. Rev. 97, 2707–2724 (1997)CrossRefGoogle Scholar
  35. 35.
    C. J. Schneider, V. L. Pecoraro, Understanding the mechanism of vanadium dependent haloperoxidases and related biomimetic catalysis; ACS Symposium Series 2; American Chemical Society: Washington, DC, 2007; vol. 974, Chapter 12Google Scholar
  36. 36.
    A.P. Mishra, R. Khan, R.R. Pandey, Indian J. Chem. 48A, 1228–1234 (2009)Google Scholar
  37. 37.
    N. Karthikeyan, V.V. Giridhar, D. Vasudevan, J. Solid State Electrochem. 14, 877–881 (2010)CrossRefGoogle Scholar
  38. 38.
    P.K. Sen, N. Gani, B. Pal, Ind. Eng. Chem. Res. 52, 2803–2813 (2013)CrossRefGoogle Scholar
  39. 39.
    C.J. Drummond, C. Fong, Curr. Opin. Colloid Interface Sci. 4, 449–456 (1999)CrossRefGoogle Scholar
  40. 40.
    B.P. Ross, A.C. Braddy, R.P. McGeary, J.T. Blanchfield, L. Prokai, I. Toth, Mol. Pharm. 1, 233–245 (2004)CrossRefGoogle Scholar
  41. 41.
    N. J. Buurma, Annual Reports Section “B” (Organic Chemistry) 108(2012) 316–333Google Scholar
  42. 42.
    R. Saha, A. Ghosh, B. Saha, Chem. Eng. Sci. 99, 23–27 (2013)CrossRefGoogle Scholar
  43. 43.
    A. Ghosh, R. Saha, B. Saha, J. Ind. Eng. Chem. 20, 345–355 (2014)CrossRefGoogle Scholar
  44. 44.
    K. Mukherjee, R. Saha, A. Ghosh, S.K. Ghosh, B. Saha, Spectrochim. Acta Part A 101, 294–297 (2013)CrossRefGoogle Scholar
  45. 45.
    K.D. Soulti, A. Troganis, A. Papaioannou, T.A. Kabanos, A.D. Keramidas, Y.G. Deligiannakis, C.P. Raptopoulou, A. Terzis, Inorg. Chem. 37, 6785–6794 (1998)CrossRefGoogle Scholar
  46. 46.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  47. 47.
    J. Krakowiak, D. Lundberg, I. Persson, Inorg. Chem. 51, 9598–9609 (2012)CrossRefGoogle Scholar
  48. 48.
    J.M. Rosen, Surfactants and interfacial phenomena, 3rd edn. (Wiley, New York, 2004)CrossRefGoogle Scholar
  49. 49.
    N. Chennamsetty, H. Bock, L. F. Scanu, F. R. Siperstein, K. E. Gubbins, J. Chem. Phys. 122, (2005) 094710(1–11)Google Scholar
  50. 50.
    R. Chaghi, L.C. de Ménorval, C. Charnay, J. Zajac, J. Colloid Interface Sci. 344, 402–409 (2010)CrossRefGoogle Scholar
  51. 51.
    H.L. Zhang, Z. Kong, Y.M. Yan, G.Z. Li, L. Yu, J. Chem. Eng. Data 53, 327–330 (2008)CrossRefGoogle Scholar
  52. 52.
    M. Singh, Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 42, 1315–1326 (2012)CrossRefGoogle Scholar
  53. 53.
    S.K. Ghosh, A. Basu, K.K. Paul, B. Saha, Mol. Phys. 107, 615–619 (2009)CrossRefGoogle Scholar
  54. 54.
    B. Saha, K.M. Chowdhury, J. Mandal, J. Solut. Chem. 37, 1321–1328 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Pintu Sar
    • 1
  • Aniruddha Ghosh
    • 1
  • Debranjan Ghosh
    • 2
  • Bidyut Saha
    • 1
  1. 1.Homogeneous Catalysis Laboratory, Department of ChemistryThe University of BurdwanBurdwanIndia
  2. 2.Department of ChemistryKrishna Chandra CollegeBirbhumIndia

Personalised recommendations