Research on Chemical Intermediates

, Volume 41, Issue 7, pp 4311–4326 | Cite as

In-situ ultrasound study of the kinetics of formation of zeolites Na–A and Na–X from coal fly ash

  • Eric Hums
  • Nicholas M. Musyoka
  • Hasan Baser
  • Alexandra Inayat
  • Wilhelm Schwieger


The kinetics of synthesis of zeolites Na–A and Na–X from fused South African class F coal fly ash were studied by using an ultrasound device as a real-time, in-situ diagnostic tool. Ex-situ techniques, for example XRD, ICP, and SEM, were used to complement the results of the kinetic study. Reaction rate, reaction order, and activation energy of crystallization processes in clear solution extracted from fused fly ash were calculated on the basis of ultrasound signal data recorded at different crystallization temperatures. Zeolite Na–X and zeolite Na–A crystals were both obtained without ageing. The zeolite Na–X sample showed contaminations of zeolite P and sodalite depending on the synthesis temperature. For zeolite Na–A the impact of ageing on the process of formation was also studied.


In-situ Ultrasound Coal fly ash Kinetics Zeolite Na–A Zeolite Na–X 



This work was conducted at the University of Erlangen–Nurnberg, Germany, as a supplement of the PhD thesis of N. Musyoka. The authors would like to thank DAAD and the German Research Foundation (DFG) for funding, and the University of Erlangen–Nuremberg, Germany, for hosting N. Musyoka during his DAAD short-term scholarship in the research group of Professor W. Schwieger (Chair of Chemical Reaction Engineering). We are also grateful to R. Müller for ICP analysis and gratefully acknowledge L. Petrik from the University of the Western Cape, South Africa, for providing the coal fly ash used in this study.


  1. 1.
    M. Avrami, J. Chem. Phys. 7, 1103–1112 (1939)CrossRefGoogle Scholar
  2. 2.
    B.V. Erofeyev, Z. Fiz. Chem. 9, 828 (1937)Google Scholar
  3. 3.
    B.V. Erofeyev, Z. Fiz. Chem. 26, 1631 (1953)Google Scholar
  4. 4.
    M. Schmachtl, T.J. Kim, W. Grill, R. Herrmann, O. Scharf, W. Schwieger, R. Schertlen, C. Stenzel, Ultrasonics 38, 809 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Herrmann, W. Schwieger, O. Scharf, H. Toufar, B. Ziberi, W. Gill, Chem. Ing. Tech. 74, 650 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Baser, T. Selvam, J. Ofili, R. Herrmann, W. Schwieger, From Zeolites to Porous MOF Materialsthe 40th Anniversary of International Zeolite Conference (2007) R. Xu, Z. Gao, J. Chen and W. Yan (Editors)Google Scholar
  7. 7.
    H. Baser, T. Selvam, J. Ofili, R. Herrmann, W. Schwieger, Stud. Surf. Sci. Catal. 170, 480 (2007)Google Scholar
  8. 8.
    N.M. Musyoka, L.F. Petrik, E. Hums, H. Baser, W. Schwieger, Catal. Today 190, 38 (2012)CrossRefGoogle Scholar
  9. 9.
    Ö. Andaç, M. Tather, A. Sirkecioğlu, I. Ece, A. Erdem-Şenatalar, Microporous Mesoporous Mater. 79, 225 (2005)CrossRefGoogle Scholar
  10. 10.
    C.A. Ríos, C.D. Williams, Fuel 87, 2482 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Inada, H. Tsujimoto, Y. Eguchi, N. Enomoto, J. Hojo, Fuel 84, 1482 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Criado, Microporous Mesoporous Mater. 106, 108 (2007)CrossRefGoogle Scholar
  13. 13.
    N.M. Musyoka, L.F. Petrik, E. Hums, in Mine Water—Managing the Challenges, ed. by R.T. Rüde, A. Freund, C.H. Wolkersdorfer (IMWA, Aachen, 2011), p. 423Google Scholar
  14. 14.
    N.M. Musyoka, L.F. Petrik, O.O. Fatoba, E. Hums, Miner. Eng. 53, 9 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Shigemoto, H. Hayashi, K. Miyaura, J. Mater. Sci. 30, 5777 (1995)CrossRefGoogle Scholar
  16. 16.
    R.I. Walton, D.J. O′Hare, J. Phys. Chem. B 105, 83 (2001)CrossRefGoogle Scholar
  17. 17.
    I. Asencio, F. Dorado, P. Sánchez, J. Lobato, Chem. Educ. 7, 19 (2002)CrossRefGoogle Scholar
  18. 18.
    H. Baser and W. Schwieger, Zeolites and related materials: trends, targets and challenges, in Proceedings of 4th International FEZA Conference A, 2008, ed. by Gédéon, P. Massiani and F. Babonneau, pp. 455–458Google Scholar
  19. 19.
    H. Baser, W. Schwieger, Stud. Surf. Sci. Catal.174(Part A), 455 (2008)Google Scholar
  20. 20.
    S.F. Hulbert, J. Br. Ceram. Soc. 6, 11 (1969)Google Scholar
  21. 21.
    R.I. Walton, F. Millange, D.J. O′Hare, A.T. Davies, G. Sankar, C.R.A. Catlow, J. Phys. Chem. B 105, 91 (2001)CrossRefGoogle Scholar
  22. 22.
    J.D. Sharp, J.H. Hancock, J. Am. Ceram. Soc. 55, 74 (1972)CrossRefGoogle Scholar
  23. 23.
    J.D. Cook, R.W. Thompson, Zeolites 8, 322 (1988)CrossRefGoogle Scholar
  24. 24.
    B. Subotic and J. Bronic, Preprints of Poster Papers 7th International Zeolite Conference, Tokyo 1986, 45Google Scholar
  25. 25.
    G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chem. Phys. Chem. 7, 297 (2006)Google Scholar
  26. 26.
    R. Herrmann, W. Schwieger, O. Scharf, C. Stenzel, H. Toufar, M. Schmachtl, B. Ziberi, W. Grill, Microporous Mesoporous Mater. 80, 1 (2005)CrossRefGoogle Scholar
  27. 27.
    N. Shigemoto, H. Hayashi, K. Miyaura, J. Mater. Sci. 28, 4781 (1993)CrossRefGoogle Scholar
  28. 28.
    H.-L. Chang, W.-H. Shih, Ind. Eng. Chem. Res. 39, 4185 (2000)CrossRefGoogle Scholar
  29. 29.
    C. Belviso, F. Cavalcante, A. Lettino, S. Fiore, Coal Combust. Gasif. Prod. 1, 8 (2009)Google Scholar
  30. 30.
    P. Sharma, J. Yeo, M.H. Han, C.H. Cho, RSC Adv. 2, 7809 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Eric Hums
    • 1
  • Nicholas M. Musyoka
    • 2
  • Hasan Baser
    • 3
  • Alexandra Inayat
    • 3
  • Wilhelm Schwieger
    • 3
  1. 1.Consulting Environmental CatalysisErlangenGermany
  2. 2.Environmental and Nano Science Research Group, Department of ChemistryUniversity of the Western CapeBellvilleSouth Africa
  3. 3.Institute of Chemical Reaction EngineeringUniversity of Erlangen - NürnbergErlangenGermany

Personalised recommendations