Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 6, pp 3981–3997 | Cite as

Photocatalytic reduction of nitroarenes to azo compounds over N-doped TiO2: relationship between catalysts and chemical reactivity

  • Huqun Wang
  • Xiaofeng Yang
  • Weifeng Xiong
  • Zhimin Zhang
Article

Abstract

This work deals with selective reduction of aromatic nitro compounds to corresponding symmetrical substituted azo compounds using nitrogen-doped TiO2 nanoparticles as photocatalyst in the presence of a catalytic amount of formic acid. Various azo compounds containing additional reducible substituents including halogens, and carboxyl and phenol functions have been synthesized in a single step by use of this catalyst. The conversion was reasonably fast, clean, and high yielding at room temperature. A mechanism of formation for the azo compounds is proposed. The behavior of the N/TiO2 catalyst is of particular interest because this is the first time, as far as we know, that formation of azo compounds has been catalyzed by an N-doped TiO2 photocatalyst. Nitrogen-doped TiO2 was prepared by a simple modified sol–gel process with urea as nitrogen source. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and transmission electron microscopy. The chemical nature of N was identified by XPS as N–Ti–O in the anatase TiO2 lattice.

Keywords

Reduction Nitro N-doped TiO2 Azo compounds 

Notes

Acknowledgments

The work was supported by financial assistance from the Science and Technology of Shanxi Province, China (project no. 2006031141), and the Natural Science Fund of Shanxi University.

Supplementary material

11164_2013_1504_MOESM1_ESM.docx (11 kb)
Supplementary material 1 (DOCX 11 kb)

References

  1. 1.
    T. Kondo, Y. Ysuji, Y. Watanabe, Tetrahedron Lett. 29, 3833 (1988)CrossRefGoogle Scholar
  2. 2.
    H. Tada, M. Hyodo, H. Kawahara, J. Phys. Chem. 95, 10185 (1991)CrossRefGoogle Scholar
  3. 3.
    H. Yoshida, C. Murata, T. Hattori, J. Catal. 194, 364 (2000)CrossRefGoogle Scholar
  4. 4.
    D.F. Ollis, E. Pellizetti, N. Serpone, Environ. Sci. Technol. 25, 1523 (1991)CrossRefGoogle Scholar
  5. 5.
    M.R. Hoffmann, S.T. Martin, W. Choi, D. Bahnemann, Chem. Rev. 69, 95 (1995)Google Scholar
  6. 6.
    X.X. Yang, C.D. Cao, K. Hohn et al., J. Catal. 252, 296 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. A 258, 124 (2006)CrossRefGoogle Scholar
  8. 8.
    N. Venkatachalam, M. Palanichamy, B. Arabindoo et al., J. Mol. Catal. A 266, 158 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Venkatachalam, M. Palanichamy, V. Murugesan, J. Mol. Catal. A 273, 177 (2007)CrossRefGoogle Scholar
  10. 10.
    H.H. Ou, S.L. Lo, J. Mol. Catal. A 275, 200 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Zhu, J. Ren, Y.N. Huo, Z.F. Bian, H.X. Li, J. Phys. Chem. C 111, 18965 (2007)CrossRefGoogle Scholar
  12. 12.
    Sayilkan Hikmet, Appl. Catal. A 319, 230 (2007)CrossRefGoogle Scholar
  13. 13.
    J.G. Yu, M.H. Zhou, B. Cheng, X.J. Zhao, J. Mol. Catal. A 246, 176 (2006)CrossRefGoogle Scholar
  14. 14.
    K.S. Yang, Y. Dai, B. Huang, J. Phys. Chem. C 111, 18985 (2007)CrossRefGoogle Scholar
  15. 15.
    S. In, A. Orlov, R. Berg et al., J. Am. Chem. Soc. 129, 13790 (2007)CrossRefGoogle Scholar
  16. 16.
    G.M. Liu, T.X. Wu, J.C. Zhao et al., Environ. Sci. Technol. 33, 2081 (1999)CrossRefGoogle Scholar
  17. 17.
    T.X. Wu, T. Liu, J.C. Zhao et al., Environ. Sci. Technol. 33, 1379 (1999)CrossRefGoogle Scholar
  18. 18.
    Y.M. Cho, W.Y. Choi, C.H. Lee et al., Environ. Sci. Technol. 35, 966 (2001)CrossRefGoogle Scholar
  19. 19.
    J. Soria, J.C. Conesa, V. Augugliaro et al., J. Phys. Chem. 95, 274 (1991)CrossRefGoogle Scholar
  20. 20.
    B. Kraeutler, A.J. Bard, J. Am. Chem. Soc. 100, 2239 (1978)CrossRefGoogle Scholar
  21. 21.
    B. Kraeutler, A. Bard, J. Nouv. J. Chim. 3, 31 (1979)Google Scholar
  22. 22.
    T. Sakata, T. Kawai, K. Hashimoto, J. Phys. Chem. 88, 2344 (1984)CrossRefGoogle Scholar
  23. 23.
    B.R. Eggins, J.T.S. Irvine, E.P. Murphy et al., J. Chem. Soc. Chem. Commun. 19, 1123 (1988)CrossRefGoogle Scholar
  24. 24.
    J. Muzyka, M.A. Fox, J. Photochem. Photobiol. A 57, 27 (1991)CrossRefGoogle Scholar
  25. 25.
    L. Lin, R.R. Kuntz, Langmuir 8870, (1992)Google Scholar
  26. 26.
    Hanyu Chen, Huixia Jin, Bin Dong, Res. Chem. Intermed. 38, 2335–2342 (2012)CrossRefGoogle Scholar
  27. 27.
    Yunfei Ma, Jinlong Zhang, Baozhu Tian et al., Res. Chem. Intermed. 38, 1947–1960 (2012)CrossRefGoogle Scholar
  28. 28.
    H.S. Jie, H.B. Lee, K.H. Chae et al., Res. Chem. Intermed. 38, 1171–1180 (2012)CrossRefGoogle Scholar
  29. 29.
    Ying Yang, Congxue Tian, Res. Chem. Intermed. 38, 693–703 (2012)CrossRefGoogle Scholar
  30. 30.
    W. Zhang, X.D. Jia, L. Yang et al., Tetrahedron Lett. 43, 9433 (2002)CrossRefGoogle Scholar
  31. 31.
    M.L. Kantam, S. Laha, J. Yadav et al., Tetrahedron Lett. 47, 6213 (2006)CrossRefGoogle Scholar
  32. 32.
    G.R. Srinivasa, K. Abiraj, D.C. Gowda, Tetrahedron Lett. 44, 5835 (2003)CrossRefGoogle Scholar
  33. 33.
    M.C. Garrigós, F. Reche, M.L. Marínb, A. Jiménez, J. Chromatogr. A 976, 309 (2002)CrossRefGoogle Scholar
  34. 34.
    F.A. Khan, J.C. Dash, R. Sudheer, Tetrahedron Lett. 44, 7783 (2003)CrossRefGoogle Scholar
  35. 35.
    R.D. Little, G.M. Venegas, J. Org. Chem. 43, 2921 (1978)CrossRefGoogle Scholar
  36. 36.
    T.F. Chung, Y.M. Wu, C.H. Cheng, J. Org. Chem. 49, 1215 (1984)CrossRefGoogle Scholar
  37. 37.
    E.D. Brady, D.L. Clark, D.W. Keogh et al., J. Am. Chem. Soc. 124, 7007 (2002)CrossRefGoogle Scholar
  38. 38.
    S. Gowda, K. Abiraj, D.C. Gowda, Tetrahedron Lett. 43, 1329 (2002)CrossRefGoogle Scholar
  39. 39.
    S. Gowda, D.C. Gowda, Tetrahedron 58, 2211 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.F. Chen, C.Y. Lee, M.Y. Yeng, H.T. Chiu, J. Cryst. Growth 247, 363 (2003)CrossRefGoogle Scholar
  41. 41.
    K. Di, Y. Zhu, X. Yang, C. Li, Colloids Surf. A 280, 71 (2006)CrossRefGoogle Scholar
  42. 42.
    K.S. Rane, R. Mhalsiker, S. Yin et al., J. Solid State Chem. 179, 3033 (2006)CrossRefGoogle Scholar
  43. 43.
    X. Chen, C. Burda, J. Phys. Chem. B 108, 15446 (2004)CrossRefGoogle Scholar
  44. 44.
    Y. Liu, D.Z. Sun, Appl. Catal. B 72, 205 (2007)CrossRefGoogle Scholar
  45. 45.
    M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater. 17, 6349 (2005)CrossRefGoogle Scholar
  46. 46.
    K. Kobayakawa, Y. Murakami, Y. Sato, J. Photochem. Photobiol. A 170, 177 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Huqun Wang
    • 1
  • Xiaofeng Yang
    • 1
  • Weifeng Xiong
    • 1
  • Zhimin Zhang
    • 2
  1. 1.Beijing Oriental YuHong Waterproof Technology Co. Ltd.BeijingPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations