Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 6, pp 3683–3697 | Cite as

Photocatalytic activity of one-dimensional Ag2V4O11 nanowires in the degradation of bisphenol a under visible-light irradiation

  • Peng Ju
  • Hai Fan
  • Shiyun AiEmail author
  • Dun ZhangEmail author
  • Yi Wang
Article

Abstract

In this study, one-dimensional Ag2V4O11 nanowires were prepared by a facile hydrothermal process and developed as a novel visible-light-sensitive photocatalyst. Ag2V4O11 nanowires were single-crystalline with large specific surface area and good visible-light absorption performance. The degradation of bisphenol A (BPA) by Ag2V4O11 was systematically investigated under visible-light irradiation, and the influence parameters were studied. Experimental results indicated that Ag2V4O11 nanowires had excellent photocatalytic activities and the degradation efficiency of BPA could reach 100 % within 150 min with 1 mg/mL Ag2V4O11. Intermediates of the degradation reaction were detected by high performance liquid chromatography coupled with mass spectrometry, and a possible degradation pathway was proposed. In addition, after eight cycles for the photodegradation of BPA, Ag2V4O11 did not exhibit significant loss of photocatalytic activity, confirming its stability and long-time reusability. The photocatalytic mechanism was studied by active species trapping experiments, revealing that the holes (h+) and hydroxyl radicals (\({\cdot}{\text{OH}}\)) played key roles in RhB degradation. This study provides a potential effective Ag2V4O11 nanowire photocatalyst for water purification and other applications.

Keywords

Ag2V4O11 Nanowire Photocatalysis Visible light 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51131008 and 21075078).

References

  1. 1.
    M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)Google Scholar
  2. 2.
    Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Nature 414, 625 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Kisch, Angew. Chem. Int. Ed. 52, 812 (2013)Google Scholar
  4. 4.
    X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)CrossRefGoogle Scholar
  5. 5.
    X.B. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)Google Scholar
  6. 6.
    K. Nakata, A. Fujishima, J. Photoch. Photobiol. C 13, 169 (2012)Google Scholar
  7. 7.
    G. Liu, Y.M. Zhao, C.H. Sun, F. Li, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47, 4516 (2008)Google Scholar
  8. 8.
    Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyorosi, Appl. Catal. B 81, 27 (2008)Google Scholar
  9. 9.
    E. Formo, E. Lee, D. Campbell, Y.N. Xia, Nano Lett. 8, 668 (2008)Google Scholar
  10. 10.
    Y. Hu, D.Z. Li, Y. Zheng, W. Chen, Y.H. He, Y. Shao, X.Z. Fu, G.C. Xiao, Appl. Catal. B 104, 30 (2011)Google Scholar
  11. 11.
    K.E. DeKrafft, C. Wang, W.B. Lin, Adv. Mater. 24, 2014 (2012)Google Scholar
  12. 12.
    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)Google Scholar
  13. 13.
    Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, J. Am. Chem. Soc. 133, 6490 (2011)Google Scholar
  14. 14.
    J. Ren, W.Z. Wang, M. Shang, S.M. Sun, L. Zhang, J. Chang, J. Hazard. Mater. 183, 950 (2010)Google Scholar
  15. 15.
    Z. Fang, Y.F. Liu, Y.T. Fan, Y.H. Ni, X.W. Wei, K.B. Tang, J.M. Shen, Y. Chen, J. Phys. Chem. C 115, 13968 (2011)Google Scholar
  16. 16.
    H.F. Shi, Z.S. Li, J.H. Kou, J.H. Ye, Z.G. Zou, J. Phys. Chem. C 115, 145 (2011)Google Scholar
  17. 17.
    Z.J. Chen, S.K. Gao, R.H. Li, M.D. Wei, K.M. Wei, H.S. Zhou, Electrochim. Acta 53, 8134 (2008)Google Scholar
  18. 18.
    L.Q. Mai, L. Xu, Q. Gao, C.H. Han, B. Hu, Y.Q. Pi, Nano Lett. 10, 2604 (2010)Google Scholar
  19. 19.
    H. Xu, H.M. Li, L. Xu, C.D. Wu, G.S. Sun, Y.G. Xu, J.Y. Chu, Ind. Eng. Chem. Res. 48, 10771 (2009)Google Scholar
  20. 20.
    L.C. Chen, G.T. Pan, T.C.K. Yang, T.W. Chung, C.M. Huang, J. Hazard. Mater. 178, 644 (2010)Google Scholar
  21. 21.
    F. Sauvage, V. Bodenez, J.M. Tarascon, K.R. Poeppelmeier, J. Am. Chem. Soc. 132, 6778 (2010)Google Scholar
  22. 22.
    J.M. Lee, M.S. Kim, B.W. Kim, Water Res. 38, 3605 (2004)Google Scholar
  23. 23.
    B.F. Gao, T.M. Lima, D.P. Subagio, T.T. Lim, Appl. Catal. A 375, 107 (2010)Google Scholar
  24. 24.
    L.Q. Ye, J.N. Chen, L.H. Tian, J.Y. Liu, T.Y. Peng, K.J. Deng, L. Zan, Appl. Catal. B 130–131, 1 (2013)Google Scholar
  25. 25.
    M. Shang, W.Z. Wang, J. Ren, S.M. Sun, L. Zhang, CrystEngComm 12, 1754 (2010)CrossRefGoogle Scholar
  26. 26.
    J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Appl. Catal. B 60, 211 (2005)Google Scholar
  27. 27.
    L.S. Zhang, W.Z. Wang, Z.G. Chen, L. Zhou, H.L. Xu, W. Zhu, J. Mater. Chem. 17, 2526 (2007)Google Scholar
  28. 28.
    N. Wang, X.Y. Li, Y.X. Wang, X. Quan, G.H. Chen, Chem. Eng. J. 146, 30 (2009)Google Scholar
  29. 29.
    L.S. Zhang, K.H. Wong, Z.G. Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, Appl. Catal. A 363, 221 (2009)Google Scholar
  30. 30.
    N. Modirshahla, A. Hassani, M.A. Behnajady, R. Rahbarfam, Desalination 271, 187 (2011)CrossRefGoogle Scholar
  31. 31.
    Y.R. Smith, A. Kar, V. Subramanian, Ind. Eng. Chem. Res. 48, 10268 (2009)Google Scholar
  32. 32.
    X.C. Song, Y.F. Zheng, E. Yang, G. Liu, Y. Zhang, H.F. Chen, Y.Y. Zhang, J. Hazard. Mater. 179, 1122 (2010)Google Scholar
  33. 33.
    W.T. Tsai, M.K. Lee, T.Y. Su, Y.M. Chang, J. Hazard. Mater. 168, 269 (2009)Google Scholar
  34. 34.
    S. Kaneco, M.A. Rahman, T. Suzuki, H. Katsumata, K. Ohta, J. Photoch, Photobiol. A 163, 419 (2004)Google Scholar
  35. 35.
    C.Y. Wang, H. Zhang, F. Li, L.Y. Zhu, Environ. Sci. Technol. 44, 6843 (2010)Google Scholar
  36. 36.
    H. Katsumata, S. Kawabe, S. Kaneco, T. Suzuki, K. Ohta, J. Photoch, Photobiol. A 162, 297 (2004)Google Scholar
  37. 37.
    Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, A. Fujishima, Environ. Sci. Technol. 35, 2365 (2001)Google Scholar
  38. 38.
    C.S. Guo, M. Ge, L. Liu, G.D. Gao, Y.C. Feng, Y.Q. Wang, Environ. Sci. Technol. 44, 419 (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of OceanologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations