Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 6, pp 3497–3505 | Cite as

Deep eutectic solvent for multi-component reactions: a highly efficient and reusable acidic catalyst for synthesis of 2,4,5-triaryl-1H-imidazoles

  • Mehdi BakavoliEmail author
  • Hossein Eshghi
  • Mohammad Rahimizadeh
  • Mohammad Reza Housaindokht
  • Ali MohammadiEmail author
  • Hassan Monhemi
Article

Abstract

Efficient synthesis of 2,4,5-trisubstituted imidazoles has been achieved by three-component cyclocondensation of benzil or benzoin, an aldehyde, and ammonium acetate by use of an acidic catalyst. The catalyst is a deep eutectic mixture of choline chloride and oxalic acid that is non-toxic and biodegradable. Crucial advantages of this process are high yields, shorter reaction times, easy work-up, purification of products by non-chromatographic methods, and reusability of the catalyst.

Keywords

2,4,5-Trisubstituted imidazoles Multi-component reactions Choline chloride Deep eutectic solvent Oxalic acid 

References

  1. 1.
    L.S. Gadekar, S.R. Mane, S.S. Katkar, B.R. Arbad, M.K. Lande, Cent. Eur. J. Chem. 7, 550 (2009)CrossRefGoogle Scholar
  2. 2.
    B. Radziszewski, Chem. Ber. 15, 1493 (1882)CrossRefGoogle Scholar
  3. 3.
    F. Japp, H. Robinson, Chem. Ber. 15, 1268 (1882)CrossRefGoogle Scholar
  4. 4.
    G. Sharma, Y. Jyothi, P. Lakshmi, Synth. Commun. 36, 2991 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Balalaie, A. Arabanian, M. Hashtroudi, Mon. Fur. Chem. 131, 945 (2000)CrossRefGoogle Scholar
  6. 6.
    J. Sangshetti, N. Kokare, A. Kotharkar, D. Shinde, Mon. Fur. Chem. 139, 125 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Mohammed, N. Kokare, J. Sangshetti, D. Shinde, J. Korean Chem. Soc. 51, 418 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Kidwai, P. Mothsra, V. Bansal, R. Goyal, Mon. Fur. Chem. 137, 1189 (2006)CrossRefGoogle Scholar
  9. 9.
    J.N. Sangshetti, N.D. Kakare, S.A. Kotharkar, D.B. Shinde, J. Chem. Sci. 120, 463 (2008)CrossRefGoogle Scholar
  10. 10.
    N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Synthesis 2829 (2007)Google Scholar
  11. 11.
    S. Siddiqui, U. Narkhede, S. Palimkar, T. Daniel, R. Lahoti, K. Srinivasan, Tetrahedron 61, 3539 (2005)CrossRefGoogle Scholar
  12. 12.
    J.F. Zhou, Y.Z. Song, Y.L. Yang, Y.L. Zhu, S.J. Tu, Synth. Commun. 35, 1369 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Mohammadi, H. Keshvari, R. Sandaroos, B. Maleki, H. Rouhi, H. Moradi, Z. Sepehr, S. Damavandi, Appl. Catal. A Gen. 429–430, 73 (2012)CrossRefGoogle Scholar
  14. 14.
    D.M. D’Souza, T.J.J. Mueller, Chem. Soc. Rev. 36, 1095 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Domling, Chem. Rev. 106, 17 (2006)CrossRefGoogle Scholar
  16. 16.
    P.A. Tempest, Curr. Opin. Drug Discov. Dev. 8, 776 (2005)Google Scholar
  17. 17.
    C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer, G. Ross, Synthesis 4007 (2008) Google Scholar
  18. 18.
    H.R. Lobo, B.S. Singh, G.S. Shankarling, Catal. Commun. 27, 179 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Gorke, F. Sreinc, R.J. Kazlauskas, Chem. Commun. 10, 1235 (2008)CrossRefGoogle Scholar
  20. 20.
    H. Zang, Q. Su, Y. Mo, B.W. Cheng, S. Jun, Ultrason. Sonochem. 17, 749 (2010)CrossRefGoogle Scholar
  21. 21.
    B.F. Mirjalili, A. Bamoniri, N. Mohaghegh, Curr. Chem. Lett. 2, 35 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Samai, G.C. Nandi, P. Singh, M.S. Singh, Tetrahedron 65, 10155 (2009)CrossRefGoogle Scholar
  23. 23.
    A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, J. Am. Chem. Soc. 126, 9142 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mehdi Bakavoli
    • 1
    Email author
  • Hossein Eshghi
    • 1
  • Mohammad Rahimizadeh
    • 1
  • Mohammad Reza Housaindokht
    • 1
  • Ali Mohammadi
    • 1
    Email author
  • Hassan Monhemi
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations