Research on Chemical Intermediates

, Volume 41, Issue 5, pp 3201–3211

Production of carboxylic acids from glucose with metal oxides under hydrothermal conditions

  • Yousif S. Adam
  • Yan Fang
  • Zhibao Huo
  • Xu Zeng
  • Zhenzi Jing
  • Fangming Jin
Article

Abstract

Production of low molecular weight carboxylic acids from glucose with the addition of metal oxides under hydrothermal conditions was investigated. The results showed that CuO, as an oxidant can significantly promote the production of lactic acid, and can also promote the production of acetic acid and formic acid. Fe3O4 can also enhance lactic acid production as a catalyst. The highest yields of 37.1, 9.4, and 4.9 % for lactic acid, acetic acid, and formic acid were achieved, respectively, which occurred at 300 °C for 60 s with CuO 1.5 mmol, NaOH 2.5 M, and water filling 35 %.

Keywords

Glucose Carboxylic acids Metal oxides CuO Hydrothermal reactions 

References

  1. 1.
    J.N. Chheda, G.W. Huber, J.A. Dumesic, Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007)CrossRefGoogle Scholar
  2. 2.
    G.W. Huber, J. Chheda, C.B. Barrett, J.A. Dumesic, Production of liquid alkanes for transportation fuel from biomass-derived carbohydrates. Science 308, 1446–1450 (2005)CrossRefGoogle Scholar
  3. 3.
    T.P. Garlson, T.P. Vispute, G.W. Huber, Green gasoline by catalytic fast pyrolysis of solid biomass derived compound. ChemSusChem 1, 397–400 (2008)CrossRefGoogle Scholar
  4. 4.
    R.W. Shaw, Y.B. Brill, A.A. Clifford, C.A. Eckert, E.U. Franck, Supercritical water a medium for chemistry. Chem. Eng. News 69, 26–39 (1991)Google Scholar
  5. 5.
    N. Akiya, P.E. Savage, The roles of water for chemical reactions in high-temperatures water. Chem. Rev. 102, 2725–2750 (2002)CrossRefGoogle Scholar
  6. 6.
    Z. Srokol, A.G. Bouche, A.E. Estrik, R.C.J. Strik, T. Maschmeyer, J.A. Peters, Hydrothermal upgrading of biomass to biofuel studies on some monosaccharide model. Carbohydr. Res. 339, 1717–1726 (2004)CrossRefGoogle Scholar
  7. 7.
    K. Hisanori, F. Jin, Y. yiuyi, M. Takehiko, H. Enomoto, Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction. Carbohydr. Res. 341, 2619–2623 (2006)CrossRefGoogle Scholar
  8. 8.
    Z. Shiping, F. Jin, H. Jiajun, H. Zhibao, Improvement of lactic acid from cellulose with addition of Zn/Ni/C under hydrothermal conditions. Bioresour. Technol. 102, 1998–2003 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Yousif, S. Xu, Z.F. Jin, F. Yan, Hydrothermal conversion of glucose into lactic acid with nickel as catalyst. Adv. Mater. Res. 347, 3873–3876 (2012)Google Scholar
  10. 10.
    F. Jin, A. Kishita, T. Moriya, H. Enomoto, N. Sato, A new process for producing Ca/Mg acetate deicer with Ca/Mg waste and acetic acid produced by wet oxidation of organic waste. Chem. Lett. 31, 88–89 (2002)CrossRefGoogle Scholar
  11. 11.
    Z. Xu, F. Jin, C. Jianglin, Y. Guodong, Z. Yalei, Z. Jianfu, AIP Conf. Proc. 1251, 384–387 (2010)Google Scholar
  12. 12.
    F. Jin, Y. Jun, G. Li, K. Ashushi, T. Kazuyuki, H. Enomoto, Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem. 10, 612–615 (2008)CrossRefGoogle Scholar
  13. 13.
    S.S. Bang, D. Johnston, Environmental effects of sodium acetate/formate deicer, ice sheartrade mark. Environ. Contam. Toxicol. 35, 580–587 (1998)CrossRefGoogle Scholar
  14. 14.
    J. Tardio, S. Bhargava, J. Prasad, D.B. Akolekar, Catalytic wet oxidation of the sodium salts of citric, lactic malic and tartaric acids in highly alkaline, high ionic strength solution. Top. Catal. 33, 193–199 (2005)CrossRefGoogle Scholar
  15. 15.
    H. Suzuki, J. Cao, F. Jin, A. Kishida, H. Enomoto, Wet oxidation of lignin model compounds and acetic acid production. J. Mater. Sci. 41, 1591–1597 (2006)CrossRefGoogle Scholar
  16. 16.
    F.M. Jin, J. Yun, G.M. Li, A. Kishita, K. Tohji, H. Enomoto, Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem. 10(6), 612–615 (2008)CrossRefGoogle Scholar
  17. 17.
    O. Ayumu, T. Ochia, K. Kajiyoshi, K. Yanagisawa, A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Appl. Catal. A 343, 49–54 (2008)CrossRefGoogle Scholar
  18. 18.
    F.M. Jin, J. Zheng, H. Enomoto, T. Moriya, N. Sato, H. Higashijima, Hydrothermal process for increasing acetic acid yield from lignocellulosic wastes. Chem. Lett. 5, 504–505 (2002)CrossRefGoogle Scholar
  19. 19.
    F.M. Jin, A. Kishita, T. Moriya, H. Enomoto, Kinetics of oxidation of food wastes with H2O2 in supercritical water. J. Supercrit. Fluids 9, 251–262 (2001)CrossRefGoogle Scholar
  20. 20.
    G.D. Yao, X. Zeng, Q.J. Li, Y.Q. Wang, Z.Z. Jing, F.M. Jin, Direct and highly efficient reduction of NiO into Ni with cellulose under hydrothermal conditions. J. Ind. Eng. Chem. Res. 51, 7853–7858 (2012)CrossRefGoogle Scholar
  21. 21.
    Q. Li, G. Yao, X. Zeng, Z. Jing, Z. Huo, F. Jin, Facile and green production of Cu from CuO using cellulose under hydrothermal conditions. J. Ind. Eng. Chem. Res. 51, 3129–3136 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Lu, X. Zeng, J. Cao, Z. Huo, F. Jin, Production of formic acid and acetic acid from phenol by hydrothermal oxidation. Res. Chem. Intermed. 37, 201–209 (2011)CrossRefGoogle Scholar
  23. 23.
    J.C. Speck Jr, The lobry de Bruyn-Alberda van Ekenstein transformation. Adv. Carbohydr. Chem. 13, 63–103 (1953)Google Scholar
  24. 24.
    A.F. Carley, P.R. Davies, G.G. Mariotti, The oxidation of formic acid to carbonate at Cu(110) surfaces. Surf. Sci. 401(3), 400–411 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yousif S. Adam
    • 1
  • Yan Fang
    • 1
  • Zhibao Huo
    • 2
  • Xu Zeng
    • 2
  • Zhenzi Jing
    • 3
  • Fangming Jin
    • 2
  1. 1.State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  2. 2.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  3. 3.College of Material Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations