Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 2, pp 559–573 | Cite as

Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies

  • Meisam Torab-MostaediEmail author
  • Mehdi Asadollahzadeh
  • Alireza Hemmati
  • Amir Khosravi
Article

Abstract

The biosorption characteristics of lanthanum and cerium ions from aqueous solution by grapefruit peel have been investigated as a function of pH, biosorbent dosage, contact time, and temperature. The pH was found to be significantly affecting the biosorption performance: pH 5.0 was found to be an optimum pH for favorable biosorption of lanthanum and cerium ions. The experimental isotherm data were analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for La(III) and Ce(III) ions were 171.20 and 159.30 mg/g, respectively. Pseudo-first-order and pseudo-second-order models were used to represent the kinetics of the process. The results show that the pseudo-second-order model is the one that best describes the kinetics of the biosorption of both metal ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) show that the biosorption process is feasible, spontaneous, and endothermic at 20–50 °C. FTIR analysis demonstrates that carboxyl and hydroxyl groups are involved in the biosorption of the metal ions. This study shows that grapefruit peel has the potential of application as an efficient biosorbent for the removal of lanthanide elements from aqueous solutions.

Keywords

Biosorption Lanthanum Cerium Grapefruit peel Isotherm Kinetic 

List of symbols

Ce

Metal concentration at equilibrium (mg/L)

Cf

Final metal ion concentration (mg/L)

Co

Initial metal concentration (mg/L)

ΔG°

Gibbs free energy change (J/mol)

ΔH°

Enthalpy change (J/mol)

k1

Pseudo-first-order rate constant of the sorption (1/min)

k2

Pseudo-second-order rate constant of the sorption [g/(mg min−1)]

KD

Distribution coefficient (mL/g)

KL

Langmuir model constant (L/mg)

KF

Freundlich model constant

M

Mass of the biosorbent (g)

n

Freundlich sorption intensity

qe

Amount of adsorbed metal per weight of biosorbent at equilibrium (mg/g)

qm

Maximum metal sorption capacity from Langmuir model (mg/g)

qt

Amount of adsorbed metal per weight of biosorbent at time t (mg/g)

R

Universal gas constant (8.314 J/mol K)

RL

Separation factor (−)

ΔS°

Entropy change (J/mol K)

t

Time (min)

T

Absolute temperature (K)

V

Volume of metal solution (L)

References

  1. 1.
    K. Kondo, E. Kamio, Desalination 144, 249 (2002)CrossRefGoogle Scholar
  2. 2.
    T.R. Tao, V.M.N. Biju, Crit. Rev. Anal. Chem. 30, 179 (2000)CrossRefGoogle Scholar
  3. 3.
    M.C. Palmieri, B. Volesky, O. Garcia, Hydrometallurgy 67, 31 (2002)CrossRefGoogle Scholar
  4. 4.
    L. Jelinek, W. Yuezhou, M. Kumagai, J. Rare Earths 24, 385 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Zuo, S. Yu, H. Zhou, J. Jiang, X. Tian, J. Radioanal. Nucl. Chem. 288, 579 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Fu, Q. Wang, J. Environ. Manage. 92, 407 (2011)CrossRefGoogle Scholar
  7. 7.
    B. Volesky, Hydrometallurgy 59, 203 (2001)CrossRefGoogle Scholar
  8. 8.
    A.I. Zouboulis, M.X. Loukidou, K.A. Matis, Process Biochem. 39, 909 (2004)CrossRefGoogle Scholar
  9. 9.
    D.A. Wase, Biosorbents for metal ions (CRC Press, London, 1997), pp. 11–88Google Scholar
  10. 10.
    P. Ahuja, R. Gupta, R.K. Saxena, Process Biochem. 34, 77 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Sarı, M. Tuzen, J. Hazard. Mater. 157, 448 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Karthikeyan, R. Balasubramanian, Biores. Technol. 98, 452 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Vijayaraghavan, Y.S. Yun, Biotechnol. Adv. 26, 266 (2008)CrossRefGoogle Scholar
  14. 14.
    M.R. Wilkins, W. Widmer, K. Grohmann, R.G. Cameron, Bioresour. Technol. 98, 1596 (2007)CrossRefGoogle Scholar
  15. 15.
    S.V. Ting, E.J. Deszyck, J. Food Sci. 26, 146 (1961)CrossRefGoogle Scholar
  16. 16.
    R.S. Blackbum, Environ. Sci. Technol. 38, 4905 (2004)CrossRefGoogle Scholar
  17. 17.
    N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185, 49 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Buffle, Complexation Reactions in Aquatic Systems. Analytical Approach (Fllis Horwood, Ltd., Chichester, 1988)Google Scholar
  19. 19.
    D. Kratochvil, B. Volesky, Trends Biotechnol. 16, 291 (1998)CrossRefGoogle Scholar
  20. 20.
    S.I. Zafar, M. Bismam, A. Saeed, M. Iqbal, Fresen. Environ. Bull. 17, 2109 (2008)Google Scholar
  21. 21.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  22. 22.
    H.M.F. Freundlich, Z. für Phys. Chem. 57A, 385 (1906)Google Scholar
  23. 23.
    C. Kütahyali, Ş. Sert, B. Çetinkaya, S. Inan, M. Eral, Sep. Sci. Technol. 45, 1456 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Vijayaraghavan, M. Sathishkumar, R. Balasubramanian, Ind. Eng. Chem. Res. 49, 4405 (2010)CrossRefGoogle Scholar
  25. 25.
    C. Qing, J. Rare Earths 28, 125 (2010)CrossRefGoogle Scholar
  26. 26.
    Ş. Sert, C. Kütahyali, S. İnan, Z. Talip, B. Çetinkaya, M. Eral, Hydrometallurgy 90, 13 (2008)CrossRefGoogle Scholar
  27. 27.
    R.C. Oliveira Jr, O. Garcia, Adv. Mater. Res. 71, 605 (2009)CrossRefGoogle Scholar
  28. 28.
    V. Diniz, B. Volesky, Water Res. 39, 239 (2005)CrossRefGoogle Scholar
  29. 29.
    D. Wu, J. Zhao, L. Zhang, Q. Wu, Y. Yang, Hydrometallurgy 101, 76 (2010)CrossRefGoogle Scholar
  30. 30.
    D. Wu, L. Zhang, L. Wang, B. Zhu, L. Fan, J. Chem. Technol. Biotechnol. 86, 354 (2010)Google Scholar
  31. 31.
    N.S. Awwad, H.M.H. Gad, M.I. Ahmad, H.F. Aly, Colloids Surf. B Biointerfaces. 81, 593 (2010)CrossRefGoogle Scholar
  32. 32.
    C. Kütahyali, Ş. Sert, B. Çetinkaya, E. Yalçıntaş, M.B. Acar, Wood Sci. Technol. 721, 46 (2011)Google Scholar
  33. 33.
    A. Sarı, M. Tuzen, Chem. Eng. J. 158, 200 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Lagergren, K. Sven, Vetenskapsakademiens. Handl. 24, 1 (1989)Google Scholar
  35. 35.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  36. 36.
    M. Minamisawa, H. Minamisawa, S. Yoshida, N. Taki, J. Agr. Food Chem. 52, 5606 (2004)CrossRefGoogle Scholar
  37. 37.
    R. Gnanasambandam, A. Ptotor, Food Chem. 68, 327 (2000)CrossRefGoogle Scholar
  38. 38.
    F.T. Li, H. Yang, Y. Zhao, R. Xu, Chin. Chem. Lett. 18, 325 (2007)CrossRefGoogle Scholar
  39. 39.
    N.V. Farinella, G.D. Matos, M.A.Z. Arruda, Bioresour. Technol. 98, 1940 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Meisam Torab-Mostaedi
    • 1
    Email author
  • Mehdi Asadollahzadeh
    • 1
    • 2
  • Alireza Hemmati
    • 2
  • Amir Khosravi
    • 3
  1. 1.Nuclear Fuel Cycle Research SchoolNuclear Science and Technology Research InstituteTehranIran
  2. 2.Department of Chemical EngineeringIran University of Science and TechnologyTehranIran
  3. 3.Young Researchers Club, North Tehran branchIslamic Azad UniversityTehranIran

Personalised recommendations