Advertisement

Research on Chemical Intermediates

, Volume 41, Issue 2, pp 511–523 | Cite as

Preparation, characterization, and biological activity of some new Schiff bases derived from aminophenoxy alkyloxy benzenamines and salicylaldehyde in the presence of p-TSA, and their Zn(II) and Cu(II) complexes

  • Akbar MobinikhalediEmail author
  • Mahsa Jabbarpour
Article

Abstract

New Schiff bases have been synthesized from aminophenoxy alkyloxy benzenamines and salicylaldehyde in the presence of a catalytic amount of p-toluenesulfonic acid (p-TSA). Further reaction of these Schiff bases with transition metal salts, for example those of Cu(II) and Zn(II), gave the corresponding complexes. The structures of these compounds were characterized by use of elemental analysis, IR, 1H NMR, and UV–visible spectroscopy, and atomic absorption data. The ligands and the related complexes were also tested for their in-vitro antibacterial activity.

Keywords

Schiff base p-Toluenesulfonic acid Complex Antibacterial activity 

References

  1. 1.
    H.A. El-Boraey, J. Therm. Anal. Calorim. 81, 339 (2005)CrossRefGoogle Scholar
  2. 2.
    M.M. Omar, G.G. Mohamed, A.M.M. Hindy, J. Therm. Anal. Calorim. 86, 315 (2006)CrossRefGoogle Scholar
  3. 3.
    C.M. da Silva, D.L. da Silva, L.V. Modolo, R.B. Alves, M.A. de Resende, C.V.B. Martins, A. de Fatima, J. Adv. Res. 2, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra, A.K. Mishra, Eur. J. Med. Chem. 43, 160 (2008)CrossRefGoogle Scholar
  5. 5.
    S.J. Wadher, M.P. Puranik, N.A. Karande, P.G. Yeole, Int. J. Pharm Tech Res. 1, 22 (2009)Google Scholar
  6. 6.
    J.S. Jain, R.S. Srivastava, N. Aggarwal, R. Sinha, Cent. Nerv. Syst. Agents Med. Chem. 7, 200 (2007)CrossRefGoogle Scholar
  7. 7.
    D.N. Dhar, C.L. Taploo, J. Sci. Ind. Res. 41, 501 (1982)Google Scholar
  8. 8.
    J.E. dos Santos, E.R. Dockal, E.T.G. Cavalheiro, J. Therm. Anal. Calorim. 79, 243 (2003)CrossRefGoogle Scholar
  9. 9.
    A.A. Abdel Aziz, A.H. Kamel, Talanta 80, 1356 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Faridbod, M.R. Ganjali, R. Dinarvand, P. Norouzi, S. Riahi, Sensors 8, 1645 (2008)CrossRefGoogle Scholar
  11. 11.
    V.K. Gupta, A.K. Singh, M.K. Pal, Anal. Chim Acta 624, 223 (2008)CrossRefGoogle Scholar
  12. 12.
    V.K. Gupta, R.N. Goyal, A.K. Jain, R.A. Sharma, Electrochim Acta 54, 3218 (2009)CrossRefGoogle Scholar
  13. 13.
    Ch.M. Che, J.Sh. Huang, Coord. Chem. Rev. 242, 97 (2003)CrossRefGoogle Scholar
  14. 14.
    K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252, 1420 (2008)CrossRefGoogle Scholar
  15. 15.
    A.L. Iglesias, G. Aguirre, R. Somanathan, M. Parra-Hake, Polyhedron 23, 3051 (2004)CrossRefGoogle Scholar
  16. 16.
    Zh. Li, G. Liu, Zh. Zheng, H. Chen, Tetrahedron 56, 7187 (2000)CrossRefGoogle Scholar
  17. 17.
    V. Casarotto, Zh. Li, J. Boucau, Y.M. Lin, Tetrahedron Lett. 48, 5561 (2007)CrossRefGoogle Scholar
  18. 18.
    T. Tanaka, Y. Yasuda, M. Hayashi, J. Org. Chem. 71, 7091 (2006)CrossRefGoogle Scholar
  19. 19.
    P.G. Cozzi, A. Papa, A. Umani-Ronchi, Tetrahedron Lett. 37, 4613 (1996)CrossRefGoogle Scholar
  20. 20.
    S. Bunce, R.J. Cross, L.J. Farrugia, S. Kunchandy, L.L. Meason, K.W. Muir, M.O. Donnell, R.D. Peacock, D. Stirling, S.J. Teat, Polyhedron 17, 4179 (1998)CrossRefGoogle Scholar
  21. 21.
    N. Takenaka, Y. Huang, V.H. Rawal, Tetrahedron 58, 8299 (2002)CrossRefGoogle Scholar
  22. 22.
    G. Roman, M.B. Andree, Chem. Technol. Maced. 20, 131 (2001)Google Scholar
  23. 23.
    R.M. Wang, J.J. Mao, J.F. Song, C.X. Huo, Y.F. He, Chin. Chem. Lett. 18, 1416 (2007)CrossRefGoogle Scholar
  24. 24.
    K.S. Abou-Melha, H. Faruk, Iran. Chem. Soc. 5, 122 (2008)CrossRefGoogle Scholar
  25. 25.
    S.I. Mostafaa, Sh. Ikedab, B. Ohtani, J. Mol. Catal. A: Chem. 225, 181 (2005)CrossRefGoogle Scholar
  26. 26.
    M. Tumer, H. Koksal, M.K. Senser, S. Serin, Transit. Met. Chem. 24, 414 (1999)CrossRefGoogle Scholar
  27. 27.
    A.C. Lima Leite, D.R.M. de Moreira, L.C.D. Coelho, F.D. de Menezes, D.J. Brondani, Tetrahedron Lett. 49, 1538 (2008)CrossRefGoogle Scholar
  28. 28.
    H. Naeimi, F. Salimi, Kh. Rabiei, J. Mol. Catal. A: Chem. 260, 100 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Mobinikhaledi, P.J. Steel, M. Polson, Synth. React. Inorg. M. 39, 189 (2009)Google Scholar
  30. 30.
    A. Mobinikhaledi, N. Foroughifar, M. Kalhor, Turk. J. Chem. 34, 367 (2010)Google Scholar
  31. 31.
    A. Mobinikhaledi, N. Foroughifar, M. Khanpour, S. Ebrahimi, Eur. J. Chem. 1, 33 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Mobinikhaledi, M. Kalhor, L. Taheri, Asian J. Chem. 22, 7399 (2010)Google Scholar
  33. 33.
    A. Mobinikhaledi, M. Jabbarpour, A. Hamta, J. Chil. Chem. Soc. 56, 812 (2011)CrossRefGoogle Scholar
  34. 34.
    A. Mobinikhaledi, M. Zendehdel, P. Safari, A. Hamta, S.M. Shariatzadeh, Synth. React. Inorg Met. Org. Nano-Metal Chem. 42, 165 (2012)CrossRefGoogle Scholar
  35. 35.
    B.G. Tweedy, Phytopathalogy 55, 910 (1964)Google Scholar
  36. 36.
    National Committee for Clinical Laboratory Standards, Villanova (NCCLS, PA, 2000)Google Scholar
  37. 37.
    J. Hadian, M. Akramian, H. Heydari, H. Mumivand, B. Asghari, Nat. Prod. Res. 26, 98 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Science, Arak UniversityArakIran

Personalised recommendations