Research on Chemical Intermediates

, Volume 41, Issue 1, pp 63–70 | Cite as

Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

  • Xinjiang XuEmail author
  • Fangcheng Kuang
  • Jiangping Xu


ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min−1.


ZnO Crystal growth Structure Photocatalysis 



This research was supported by the natural science fund from Guangxi Province (2013GXNSFBA019046), Guangxi Educational Department (201203YB153) and Key Project (2011YJZD19) from Yulin Normal University (X.-J. Xu).


  1. 1.
    Z.L. Wang, ACS Nano 2, 1987 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Das, D. Khushalani, J. Phys. Chem. C 114, 2544 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Hariharan, Appl. Catal. A Gen. 304, 55 (2006)CrossRefGoogle Scholar
  4. 4.
    E. García-López, G. Marcí, N. Serpone, H. Hidaka, J. Phys. Chem. C 111, 18025 (2007)CrossRefGoogle Scholar
  5. 5.
    R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Penuela, M. Perez-Moya, H.D. Mansilla, Catal. Today 144, 100 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Kislov, J. Lahiri, H. Verma, D. Yogi Goswami, E. Stefanakos, M. Batzill, Langmuir 25, 3310 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kalt, ACS Nano 2, 1661 (2008)CrossRefGoogle Scholar
  8. 8.
    J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16, 1661 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Xu, Y. Hu, C. Pelligra, C. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, Chem. Mater. 21, 2875 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Chu, Y. Masuda, T. Ohji, K. Kato, Langmuir 26, 2811 (2010)CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, M. Lu, H. Xu, W.S. Chin, Chem. Eur. J. 13, 632 (2007)CrossRefGoogle Scholar
  12. 12.
    J.B. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, J. Phys. Chem. B 109, 9463 (2005)CrossRefGoogle Scholar
  13. 13.
    J.B. Liang, S. Bai, Y. Zhang, M. Li, W. Yu, Y. Qian, J. Phys. Chem. C 111, 1113 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Chemistry and MaterialYulin Normal UniversityYulinPeople’s Republic of China
  2. 2.Testing Center of Fujian Institute of Geology and MineralFuzhouPeople’s Republic of China
  3. 3.Computational Solid Mechanics Laboratory (CSML)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations