Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 8, pp 3059–3071 | Cite as

Synthesis of 3,6-dichloro salicylic acid by Kolbe–Schmitt reaction. 2. Proton transfer mechanism for the side reaction

  • Xingxing Yan
  • Zhenmin ChengEmail author
  • Zhi Yue
  • Peiqing Yuan
Article

Abstract

Experimental and computational efforts were combined to clarify the primary reason for the low yield of 3,6-dichloro salicylic acid synthesized from 2,5-dichloro phenoxide and CO2 by the Kolbe–Schmitt reaction. Liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS) analysis showed that di-potassium salt is the unique ionized existing form of 3,6-dichloro salicylate as the direct carboxylate product. In addition, a byproduct 2,5-DCP with equivalent 3,6-dichloro salicylate is also produced. Theoretical investigation by means of the density functional theory revealed that the formation of 2,5-DCP can easily occur through a Brønsted–Lowry proton transfer mechanism, which is characterized by the rotation of carboxyl with a favorable thermodynamic potential. The byproduct 2,5-DCP can reach 50 % in a maximum theoretical yield, which will seriously inhibit the positive reaction equilibrium, meanwhile it deteriorates the mass transfer due to its high viscosity. This side reaction is confirmed to be the controlling factor for the low yield of 3,6-DCSA.

Keywords

3,6-dichrolo salicylic acid Kolbe–Schmitt reaction di-metallic salts Density functional theory 

Notes

Acknowledgments

Financial supports from Fundamental Research Funds for the Central Universities of China and the Science and Technology Committee of the Shanghai Municipal Government under Grant number 09DZ1100203 are gratefully acknowledged.

References

  1. 1.
    C.R. Worthing, S.B. Walker, Pesticides Manual: A World Compendium (British Crop Protection Council, London, 1987), pp. 99–101Google Scholar
  2. 2.
    A.S. Lindsey, H. Jeskey, Chem. Rev. 57, 583 (1957)CrossRefGoogle Scholar
  3. 3.
    M. Kunert, E. Dinjus, M. Nauck, J. Sieler, Chem. Ber. 130, 1461 (1997)CrossRefGoogle Scholar
  4. 4.
    M.J.S. Dewar, The Electronic Theory of Organic Chemistry (Oxford University Press, London, 1949), pp. 168–227Google Scholar
  5. 5.
    Z. Markovic, J.P. Engelbrecht, S. Markovic, Z. Naturfors, Sect. A-J. Phys. Sci. 57, 812 (2002)Google Scholar
  6. 6.
    I. Stanescu, L.E.K. Achenie, Chem. Eng. Sci. 61, 6199 (2006)CrossRefGoogle Scholar
  7. 7.
    I. Stanescu, R.R. Gupta, L.E.K. Achenie, Mol. Simul. 32, 279 (2006)CrossRefGoogle Scholar
  8. 8.
    Z. Markovic, S. Markovic, N. Manojlovic, J. Predojevic-Simovic, J. Chem. Inf. Model. 47, 1520 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Hales, J.I. Jones, A. Lindsey, J. Chem. Soc. 3145 (1954)Google Scholar
  10. 10.
    S. Hunt, J.I. Jones, A. Lindsey, D. Killoh, H. Turner, J. Chem. Soc. 3152 (1958)Google Scholar
  11. 11.
    W. Hentschel, J. Prakt. Chem. 27, 39 (1883)Google Scholar
  12. 12.
    R. Schmitt, J. Prakt. Chem. 31, 397 (1885)CrossRefGoogle Scholar
  13. 13.
    R.B. Cole, Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications (Wiley, New York, 1997), pp. 17–18Google Scholar
  14. 14.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K.Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 Revision D.01 (Gaussian Inc, Wallingford, 2004)Google Scholar
  15. 15.
    Z. Markovic, S. Markovic, N. Begovic, J. Chem. Inf. Model. 46, 1957 (2006)CrossRefGoogle Scholar
  16. 16.
    F. Hibbert, Adv. Phys. Org. Chem. 22, 113 (1987)Google Scholar
  17. 17.
    M. Smith, J. March, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (Wiley, New York, 2007), pp. 160–161Google Scholar
  18. 18.
    X.X. Yan, Z.M. Cheng, J. East China Univ. Sci. Technol. (Natural Science Edition) 38, 8 (2012)Google Scholar
  19. 19.
    P. Phadtare, L. Doraiswamy, Ind. Eng. Chem. Proc. Des. Dev. 4, 274 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xingxing Yan
    • 1
  • Zhenmin Cheng
    • 1
    Email author
  • Zhi Yue
    • 1
  • Peiqing Yuan
    • 1
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations