Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 4, pp 1595–1605 | Cite as

Sonochemical synthesis of Fe–TiO2–SiC composite for degradation of rhodamine B under solar simulator

  • Tae Ho Kim
  • Christian Gómez-Solís
  • Edgar Moctezuma
  • Soo Wohn Lee
Article

Abstract

Fe–TiO2–SiC composite with photocatalytic activity has been synthesized by a low cost sonochemical process in the presence of citric acid. The addition of citric acid during the sonochemical process allows the formation of a photocatalytic coating of Fe–TiO2 onto silicon carbide. Experimental characterization results indicate that the composite was formed over all the surface of the silicon carbide (SiC) with an anatase crystalline TiO2 phase with iron incorporation. The incorporation of iron narrows the band gap of TiO2 which allow the absorbtion of light with a large wavelength. The obtained Fe–TiO2–SiC composite exhibits good enhanced photocatalytic activity for the degradation of rhodamine B under solar simulator irradiation in comparison with the commercial TiO2–P25.

Keywords

Silicon carbide Sonochemistry Photodegradation Solar simulator Rhodamine B 

Notes

Acknowledgment

This research was supported by the GRL program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (20110-00339).

References

  1. 1.
    J.G. Yu, Q.J. Xiang, M.H. Zhou, Appl. Catal. B 90, 595 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Yuan, R.Q. Sheng, J.L. Zhang, F. Chen, Surf. Sci. Catal. 165, 261 (2007)CrossRefGoogle Scholar
  3. 3.
    K. Bhattacharyya, A.K. Patra, P.U. Sastry, A.K. Tyagi, J. Alloy Comp. 482, 256 (2009)CrossRefGoogle Scholar
  4. 4.
    F.J. Ren, Y.H. Ling, J.Y. Feng, Appl. Surf. Sci. 256, 3735 (2010)CrossRefGoogle Scholar
  5. 5.
    W.Y. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  6. 6.
    V. Keller, P. Bernhardt, F. Garin, J. Catal. 215, 129 (2003)CrossRefGoogle Scholar
  7. 7.
    H. Yamashita, Y. Nishida, S. Yuan, K. Mori, M. Narisawa, Y. Matsumura, T. Ohmichi, I. Katayama, Catal. Today 120, 163 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Keller, V. Keller, F. Garin, M.J. Ledoux, Mater. Lett. 58, 970 (2004)CrossRefGoogle Scholar
  9. 9.
    T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, N. Serpone, H. Hidaka, Appl. Catal. B 42, 13 (2003)CrossRefGoogle Scholar
  10. 10.
    N. San, A. Hatipoglu, G. Kocturk, Z. Cinar, J. Photochem. Photobiol. A 146, 189 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Obregón Alfaro, V. Rodríguez-González, A.A. Zaldívar-Cadena, S.W. Lee, Catal. Today 166, 166 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Zhang, Z. Chen, Y. Li, Q. Wang, L. Wan, Y. You, Mater. Chem. Phys. 107, 1 (2008)CrossRefGoogle Scholar
  13. 13.
    A.N. Oket, E. Sayinsoz, Sep. Purif. Technol. 62, 535 (2008)CrossRefGoogle Scholar
  14. 14.
    T. Zhang, L. Ge, X. Wang, Z. Gu, Polymer 49, 2898 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, Z. Chen, Y. Li, Q. Wang, L. Wan, Catal. Commun. 9, 1178 (2008)CrossRefGoogle Scholar
  16. 16.
    K.C. Remant Bahadur, C.K. Kim, M.S. Khil, H.Y. Kim, I. Kim Soo, Mater. Sci. Eng. 28, 70 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Ishii, H. Sakai, H. Murata, Mater. Lett. 62, 3370 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Tong, T. Okano, T. Iseki, T. Yano, J. Mater. Sci. 30, 3087 (1995)CrossRefGoogle Scholar
  19. 19.
    D. Dong, S. Tasaka, N. Inagaki, Polym. Degrad. Stab. 72, 345 (2001)CrossRefGoogle Scholar
  20. 20.
    K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Struct. 81, 401 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, N. Li, Y.F. Ma, F. Du, F.F. Li, X.B. He, X. Lin, H.J.Y.D. Gao, Chem. Carbon 45, 1614 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Ikuma, H. Bessho, Int. J. Hydrogen Energy 32, 2689 (2007)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, A. Zhou, Z. Yang, Mater. Lett. 62, 1930 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  25. 25.
    S.J. O’Connor, K.J.D. MacKenzie, M.E. Smith, J.V. Hanna, J. Mater. Chem. 20, 10234 (2010)CrossRefGoogle Scholar
  26. 26.
    C. Wang, X.M. Zhang, X.F. Qian, Y. Xie, W.Z. Wang, Y.T. Qian, Mater. Res. Bull. 33(12), 1747 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Zhu, D. Zhang, X. Zhang, L. Zhang, X. Ma, Y. Zhang, M. Cai, Micropor. Mesopor. Mater. 126, 20 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, J. Hazard. Mater. 171, 1045 (2009)CrossRefGoogle Scholar
  29. 29.
    D. Yang, S.E. Park, J.K. Lee, S.W. Lee, J. Cryst. Growth 311, 508 (2009)CrossRefGoogle Scholar
  30. 30.
    S.W. Lee, S. Obregón-Alfaro, V. Rodríguez-González, J. Photochem. Photobiol. 221, 71 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, J. Li, C. Feng, D. Zhang, Ultrasonics Sonochem. 18, 1082 (2011)CrossRefGoogle Scholar
  32. 32.
    P. Gibot, C. Vix-Guterl, J. Eur. Ceram. Soc. 27, 2195 (2007)CrossRefGoogle Scholar
  33. 33.
    V. Collins-Martinez, A.L. Ortiz, A.A. Elguezabal, Int. J. Chem. React. Eng. 5, A92 (2007)Google Scholar
  34. 34.
    C.L. Luu, Q.T. Nguyen, S.T. Ho, Adv. Nat. Sci. 1, 015008 (2010)Google Scholar
  35. 35.
    K. Wantala, L. Laokiat, P. Khemthong, N. Grisdanurak, K. Fukaya, J. Taiwan, Int. Chem. Eng. 41, 612 (2010)Google Scholar
  36. 36.
    N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99, 16646 (1995)CrossRefGoogle Scholar
  37. 37.
    E.M. Patterson, C.E. Shelden, B.H. Stockton, Appl. Opt. 16, 729 (1977)CrossRefGoogle Scholar
  38. 38.
    J.G. Yu, X.X. Yu, Environ. Sci. Technol. 42, 4902 (2008)CrossRefGoogle Scholar
  39. 39.
    B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)CrossRefGoogle Scholar
  40. 40.
    M.H. Zhou, J.G. Yu, B. Cheng, H.G. Yu, Mater. Chem. Phys. 93, 159 (2005)CrossRefGoogle Scholar
  41. 41.
    Y.Y. Wang, K. Kusumoto, C.J. Li, Phys. Procedia 32, 95 (2012)CrossRefGoogle Scholar
  42. 42.
    V. Keller, F. Garin, Catal. Commun. 4, 377 (2003)CrossRefGoogle Scholar
  43. 43.
    Y. Zhang, Y. Xu, T. Li, Y. Wang, Particuol 10, 46 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tae Ho Kim
    • 1
  • Christian Gómez-Solís
    • 2
  • Edgar Moctezuma
    • 2
  • Soo Wohn Lee
    • 1
  1. 1.Research Center for Eco Multi-Functional Nano MaterialsSun Moon UniversityTangjung-MyonRepublic of Korea
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations