Research on Chemical Intermediates

, Volume 40, Issue 1, pp 345–356 | Cite as

Autocatalytic dehydrogenation of propane

  • V. N. Snytnikov
  • T. I. Mishchenko
  • Vl. N. Snytnikov
  • I. G. Chernykh


Homogeneous gas-phase pyrolysis of propane was performed by using continuous CO2 laser irradiation for bulk heating of the reaction mixture. Laser energy was absorbed by ethylene, the main product of propane dehydrogenation, and transferred to the reaction medium via collisional relaxation. A mechanism of propane dehydrogenation is suggested to describe the pyrolysis process. The mechanism involves autocatalysis by ethylene and includes propane–ethylene interaction with the formation of ethyl and propyl radicals.


Propane pyrolysis Autocatalysis Laser irradiation Ethylene biradical 



This work has been supported by RFBR 12-08-00871, Russian Federation President Grant for the Leading Scientific Schools for funding (NSh 524.2012.3), Project UNIHEAT of Skolkovo Foundation, Integration Project no. 130, Federal Program "Scientific and Scientifical-Pedagogical cadres innovation Russia for 2009-2013" of the Federal Agency For Science And Innovation, RFBR grant no. 12-07-00065. The authors are grateful to Dr S.E. Malykhin for scientific and technical assistance.


  1. 1.
    N.N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Pergamon Press, London, 1958), p. 59Google Scholar
  2. 2.
    F.O. Rice, K.F. Herzfeld, J. Am. Chem. Soc. 56, 284 (1934)CrossRefGoogle Scholar
  3. 3.
    M.M. Papic, K.J. Laidler, Can. J. Chem. 49, 535 (1971)CrossRefGoogle Scholar
  4. 4.
    A. Lifshitz, M. Frenclach, J. Phys. Chem. 79(7), 686 (1975)CrossRefGoogle Scholar
  5. 5.
    A.M. Starik, N.S. Titova, L.S. Yanovskii, Kinet. Catal. 40(1), 7 (1999)Google Scholar
  6. 6.
    M.G. Ktalkherman, High Temp. 47, 5 (2009)CrossRefGoogle Scholar
  7. 7.
    M.E. Dente, E.M. Ranzi, In Pyrolysis: Theory and Industrial Practice, vol. 133 ed. by L.F. Albriht, B.L. Crynes (Academic Press, New York, 1983)Google Scholar
  8. 8.
    A.S. Tomlin, M.J. Pilling, J.H. Merkin, J. Brindley, N. Burgess, A. Gough, Ind. Eng. Chem. Res. 34, 3749 (1995)CrossRefGoogle Scholar
  9. 9.
    YuM Zhorov, Kinetika promyshlennykh organicheskikh reaktsii: Spravochnoe izdanie (Kinetics of Industrial Organic Reactions: A Handbook) (Khimiya, Moscow, 1989)Google Scholar
  10. 10.
    T.N. Mukhina, N.L. Barabanov, S.E. Babash et al., Piroliz uglevodorodnogo syr’ya (Pyrolysis of Hydrocarbon Stocks) (Khimiya, Moscow, 1987)Google Scholar
  11. 11.
    D.L. Allara, D. Edelson, Int. J. Chem. Kinet. 7, 479 (1975)CrossRefGoogle Scholar
  12. 12.
    S.K. Layokun, D.H. Slater, Ind. Eng. Chem. Process Des. Dev. 18(2), 232 (1979)CrossRefGoogle Scholar
  13. 13.
    A. Dombi, P. Huhn, Int. J. Chem. Kinet. 18, 227 (1986)CrossRefGoogle Scholar
  14. 14.
    A. Dombi, I. Horvath, P. Huhn, Int. J. Chem. Kinet. 18, 255 (1986)CrossRefGoogle Scholar
  15. 15.
    V.N. Snytnikov, T.I. Mishchenko, VlN Snytnikov, S.E. Malykhin, V.I. Avdeev, V.N. Parmon, Res. Chem. Intermed. 38(3), 1133 (2012)CrossRefGoogle Scholar
  16. 16.
    V.N. Snytnikov, T.I. Mischenko, Vl.N. Snytnikov, O.P. Stoyanovskaya, V.N. Parmon, Kinet. Catal. 51(1), 10–17 (2010). doi: 10.1134/S0023158410010039 Google Scholar
  17. 17.
    V.A. Vshivkov, O.P. Sklyar, V.N. Snytnikov, I.G. Chernykh, Vychislitelnye Tekhnologii. 11(1), 35 (2006)Google Scholar
  18. 18.
    V.A. Vshivkov, O.P. Stoyanovskaya, Vychislitelnye Tekhnologii. 12(4), 42 (2007)Google Scholar
  19. 19.
    E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential. Springer Series in Computational Mathematics (Springer, 2010), p. 614, ISBN:9783642052200Google Scholar
  20. 20.
    C.K. Westbrook, W.J. Pitz, Combust. Sci. Technol. 37, 117 (1984)CrossRefGoogle Scholar
  21. 21.
    J.A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron, R.F. Hampson, D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg. Retrieved September 12, 2011
  22. 22.
    C.N. Hinshelwood, Proc. R. SOC. London Ser A 234, 301 (1956)CrossRefGoogle Scholar
  23. 23.
    M.C. Lin, K.J. Laidler, Can. J. Chem. 44, 2927 (1966)CrossRefGoogle Scholar
  24. 24.
    H.J. Curran, Int. J. Chem. Kinet. 38, 250 (2006)CrossRefGoogle Scholar
  25. 25.
    D.M. Matheu, J.M. Grenda, J. Phys. Chem. 109, 5343 (2005)CrossRefGoogle Scholar
  26. 26.
    S.P. Krishtal, A.M. Mebel, R.I. Kaiser, J. Phys. Chem. A 113, 11112 (2009)CrossRefGoogle Scholar
  27. 27.
    T. Koike, W.C. Gardlner, J. Phys. Chem. 84, 2005 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • V. N. Snytnikov
    • 1
    • 3
  • T. I. Mishchenko
    • 1
    • 3
  • Vl. N. Snytnikov
    • 1
    • 3
  • I. G. Chernykh
    • 2
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Institute of Computational Mathematics and Mathematical GeophysicsNovosibirskRussia
  3. 3.UNICAT LtdNovosibirskRussia

Personalised recommendations