Research on Chemical Intermediates

, Volume 39, Issue 9, pp 3981–3989 | Cite as

Effect of the TiO2 shell thickness on the photocatalytic activity with ZnO/TiO2 core/shell nanorod microspheres

  • Min Mo
  • Jiansheng Tang
  • Min Zheng
  • Qi Lu
  • Yao Chen
  • Hongru Guan
Article

Abstract

TiO2 shell has been fabricated directly on the surface ZnO nanorod microspheres by thermal decomposition of tetrabutyl titanate in octadecane. The thickness of the coverage with TiO2 was controlled by the amount of tetrabutyl titanate added. The core/shell nanorods have anatase TiO2 shells after annealed at 873 K in air. This method enables us to tailor the thickness of TiO2 shell for desired photooxidation application in phenol degradation. ZnO nanorods showed a relatively low efficiency in the photooxidation reaction of phenol. After coating atanase TiO2, the photocatalytic activity of the ZnO/TiO2 core/shell nanocomposites was significantly enhanced in photocatalytic degradation of phenol. It was also found that the thickness of the TiO2 shell affected the catalytic efficiency of ZnO/TiO2 core/shell nanorod microspheres.

Keywords

ZnO/TiO2 core/shell Photocatalytic degradation Phenol Thermolysis 

References

  1. 1.
    H.M. Zhang, X. Quan, S. Chen, H.M. Zhao, Appl. Phys. A 89, 679–763 (2007)Google Scholar
  2. 2.
    Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954–12955 (2002)Google Scholar
  3. 3.
    T.J. Hsueh, S.J. Chang, Y.R. Lin, S.Y. Tsai, I.C. Chen, C.L. Hsu, Cryst. Growth Des. 6, 1282–1284 (2006)CrossRefGoogle Scholar
  4. 4.
    R.B. Peterson, C.L. Fields, B.A. Gregg, Langmuir 20, 5114–5118 (2004)CrossRefGoogle Scholar
  5. 5.
    Y.R. Lin, Y.K. Tseng, S.S. Yang, S.T. Wu, C.L. Hsu, S.J. Chang, Cryst. Growth Des. 5, 579–583 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, J. Am. Chem. Soc. 127, 2378–2379 (2005)CrossRefGoogle Scholar
  7. 7.
    V. Krishnakumar, K.M. Kumar, B.K. Mandal, F.R.N. Khan, Res. Chem. Intermed. 38, 1881–1892 (2012)Google Scholar
  8. 8.
    F. Xu, D. Guo, H. Han, H. Wang, Z. Gao, D. Wu, K. Jiang, Res. Chem. Intermed. 38, 1579–1589 (2012)Google Scholar
  9. 9.
    J. Hwang, B. Min, J.S. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee, S. Kim, Adv. Mater. 16, 422–425 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110, 22652–22663 (2006)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, W. Fan, L. Gao, Appl. Catal. B 76, 168–173 (2007)CrossRefGoogle Scholar
  12. 12.
    W. Wu, Y.W. Cai, J.F. Chen, S.L. Shen, A. Martin, L.X. Wen, J. Mater. Sci. 41, 5845–5850 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Mo, T. Ma, L. Jia, L. Peng, X. Guo, W. Ding, Mater. Lett. 63, 2233–2235 (2009)CrossRefGoogle Scholar
  14. 14.
    M.N. Rashed, A.A. El-Amin, Int. J. Phys. Sci. 2, 073–081 (2007)Google Scholar
  15. 15.
    L.A. Ghule, A.A. Patil, K.B. Sapnar, Toxicol. Environ. Chem. 93, 623–624 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Sartori, F. Visentin, N. El Habra, Cryst. Res. Technol. 46, 885–890 (2011)CrossRefGoogle Scholar
  17. 17.
    M.H. Liao, C.H. Hsu, D.H. Chen, J. Solid State Chem. 179, 2020–2026 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Irannejad, K. Janghorban, O.K. Tan, H. Huang, Electrochim. Acta 58, 19–24 (2011)CrossRefGoogle Scholar
  19. 19.
    X. Zhou, S. Chen, D. Zhang, Langmuir 22, 1383–1387 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Zou, X. Yan, J. Han, R. Chen, J. Metson, B. Cowie, L.T.A. Tadich, W. Gao, in The 10th International Conference on Synchrotron Radiation Instrumentation, 2010, pp. 247–250Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Min Mo
    • 1
  • Jiansheng Tang
    • 1
  • Min Zheng
    • 1
  • Qi Lu
    • 1
  • Yao Chen
    • 1
  • Hongru Guan
    • 1
  1. 1.Department of Educational ScienceHunan First Normal UniversityChangshaChina

Personalised recommendations