Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1645–1654

Effects of NH4+ and Cl on the preparation of nanocrystalline TiO2 by hydrothermal method

Article

Abstract

Nanocrystalline TiO2 powders with different morphologies and grain sizes were successfully synthesized by the hydrothermal method. Different concentrations of hydrochloric acid (HCl), ammonium chloride (NH4Cl), ammonium sulfate [(NH4)2SO4], and ammonium carbonate [(NH4)2CO3] were used as additives in the hydrothermal process to investigate the effect of the concentration of ammonium (NH4+) and chloride ions (Cl) on the phase compositions, morphologies, and grain sizes of the prepared TiO2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy, Brunauer–Emmett–Teller analysis, and UV–Vis spectra. XRD results show that the as-synthesized powders are composed of anatase or a mixture of anatase and brookite. The grain size of the synthesized nano-TiO2 powder ranged from 5.0 to 11.3 nm, and the related BET specific surface area varied from 127.5 to 191.0 m2/g. The photocatalytic activities of the prepared TiO2 powders were evaluated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation, and the results show that the photocatalytic performance of TiO2 powders synthesized with additives is improved compared with that of TiO2 prepared without any additives.

Keywords

Hydrothermal method Nanocrystalline TiO2 Photocatalytic activity 

References

  1. 1.
    M. Anpo, P.V. Kamat, Springer Science + Business Media (LLC, New York, 2010), p. 3Google Scholar
  2. 2.
    M. Kitano, M. Matsuoka, M. Ueshima, et al., Appl. Catal. A Gen. 325, 1 (2007)Google Scholar
  3. 3.
    A. Fujishima, T.N. Rao, D.A. Tryk, Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000)Google Scholar
  4. 4.
    K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44(12), 8269 (2005)CrossRefGoogle Scholar
  5. 5.
    D.V. Bavykin, V.P. Dubovitskaya, A.V. Vorontsov, et al., Res. Chem. Intermed. 33(3–5), 449 (2007)Google Scholar
  6. 6.
    K.A. Malinger, A.Maguer, A.Thorel, et al., Chem. Eng. J. 174, 445 (2011)Google Scholar
  7. 7.
    J. Marugán, P. Christensen, T. Egerton, et al., Appl. Catal. B Environ. 89, 273 (2009)Google Scholar
  8. 8.
    J. Yu, W. Wang, B. Cheng, B.-L. Su, J. Phys. Chem. C Vol. 113, 6743 (2009)CrossRefGoogle Scholar
  9. 9.
    R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J. Colloid Interface Sci. 302, 530 (2006)CrossRefGoogle Scholar
  10. 10.
    Y.V. Koleńko, B.R. Churagulov, M. Kunst, L. Mazerolles, C. Colbeau-Justin, Appl. Catal. B Environ. vol. 54 (2004), p. 51Google Scholar
  11. 11.
    K. Byrappa, M. Yoshimura, William Andrew, New York, (2001), p. 172Google Scholar
  12. 12.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)CrossRefGoogle Scholar
  13. 13.
    Y. Zheng, E. Shi, S. Cui, W. Li, X. Hu, Sci. Lett. 19, 1445 (2000)CrossRefGoogle Scholar
  14. 14.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates Jr, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  15. 15.
    S. Bakardjieva, et al., Appl. Catal. B Environ. 58, 201 (2005)Google Scholar
  16. 16.
    P. Comba, Andre’ Merbach: Inorg. Chem. 26, 1318 (1987)Google Scholar
  17. 17.
    Y. Zheng, S. Erwei, L. Wenjun, et al., Sci. China Series E Technol. Sci. 45(3), 273 (2002)Google Scholar
  18. 18.
    N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C 113, 3062 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Peter, G.W. Watson, E.T. Kelsey, S.C. Parker, J. Mater. Chem. 7, 563 (1997)CrossRefGoogle Scholar
  20. 20.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  21. 21.
    H. Yin, Y. Wada, T. Kitamura, et al., J. Mater. Chem. 11, 1694 (2001)Google Scholar
  22. 22.
    M.A.K. Ahmed, H. Fjellvåg, A. Kjekshus, Acta Chem. Scand. 50, 275 (1996)CrossRefGoogle Scholar
  23. 23.
    K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103, 7781 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Inorganic Nonmetallic MaterialsSchool of Materials Science and Engineering, University of Science and Technology BeijingBeijingChina

Personalised recommendations