Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1727–1734

Investigation into the crystal structure of bis(pyridine)-bis(trichloroacetato) copper(II) and its electrophotochemical properties

  • Limin Li
  • Li Liu
  • Wulan Zeng
  • Huanmei Guo
  • Yufeng Li
  • Qijin Geng
Article
  • 108 Downloads

Abstract

A novel chained Cu(II) complex was synthesized from trichloroacetato copper(II) and pyridine in ethanol solvent, and characterized by elemental analysis and infrared (IR) spectroscopy. The special crystal structure of the Cu(II) complex was determined by X-ray single-crystal diffraction. The results indicate that a chained structure of the Cu(II) complex formed through intermolecular hydrogen bonds. Cu(CCl3COO)2(C5H5N)2(H2O) was monoclinic, with unit cell P21/c and cell parameters as follows: a = 14.389(3) Å, b = 7.1911(14) Å, c = 23.107(8) Å, V = 2,257.5(10) Å3, Z = 4, Mr = 564.51, Dc = 1.661 mg/m3, T = 293(2) K, F(000) = 1,124, μ(Mo Kα) = 1.704 mm−1, R = 0.0984, and ωR = 0.2791. The electrochemical behavior of the Cu(II) complex on a glassy carbon working electrode determined by cyclic voltammetry showed the electrochemical activity of the title compound at 0.2 to −0.3 V (versus SCE) in NH3–NH4Cl buffer solution (pH 9.2), and the redox peak current of the complex had a good linear relationship with the square root of the scan rate in the range 0.02–0.2 V/s.

Keywords

Cu(II) complex Synthesis Crystal structure Electrochemical properties Cyclic voltammetry 

References

  1. 1.
    A.S. Antsysbkina, G.G. Sadikov, T.V. Koksharova, I.S. Gritsenko, V.S. Sergienko, Russ. J. Inorg. Chem. 51, 1571–1576 (2006)CrossRefGoogle Scholar
  2. 2.
    B. Chen, M. Eddaoudi, S.T. Hyde, M.O. Keeffe, O.M. Yaghi, Science 291, 1021–1023 (2001)CrossRefGoogle Scholar
  3. 3.
    J. Moncol, M. Mudra, P. Lonnecke, M. Hewitt, M. Valko, H. Morris, J. Svorec, M. Melnik, M. Mazur, M. Koman, Inorg. Chim. Acta 360, 3213–3225 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Pang, E.J.P. Marcotte, C. Seward, R.S. Brown, S.N. Wang, Angew. Chem. 113, 4166–4169 (2001)CrossRefGoogle Scholar
  5. 5.
    Q.R. Fang, G.S. Zhu, M. Xue, J.Y. Sun, Y. Wei, S. Qiu, R.R. Xu, Angew Chem. 44, 3845–3848 (2005)CrossRefGoogle Scholar
  6. 6.
    D. Valigura, J. Moncol, M. Korabik, et al. Eur. J. Inorg. chem. 19, 3813–3817 (2006)Google Scholar
  7. 7.
    M. Melnik, M. Koman, D. Hudecova, J. Moncol, B. Dudova, T. Glowiak, J. Mrozinski, C.E. Holloway, Inorg. Chim. Acta 308, 1–7 (2000)CrossRefGoogle Scholar
  8. 8.
    F. Bentiss, M. Lagrenee, J.P. Wignacourt, E.M. Holt, Polyhedron 21, 403–408 (2002)CrossRefGoogle Scholar
  9. 9.
    L. Sieron, Acta Crystallogr. E63, 1661–1679 (2007)Google Scholar
  10. 10.
    J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404, 982–986 (2000)CrossRefGoogle Scholar
  11. 11.
    G.M. Sheldrick, SHELXTL, v5 reference manual, siemens analytical X-ray systems (Bruker, AXS, Inc., Madison, 1997)Google Scholar
  12. 12.
    A.J. Wilson, International Table for X-Ray Crystallography, (Kluwer, Dordrecht, 1992), pp. 500–502 and pp. 219–222Google Scholar
  13. 13.
    W.S. Cardoso, V.L.N. Dias, W.M. Costa, I.D.A. Rodrigues, E.P. Marques, A.G. Sousa, J. Boaventura, C.W.B. Bezerra, C. Song, H.S. Liu, J.J. Zhang, A.L.B. Marques, J. Appl. Electrochem. 39, 55–64 (2009)CrossRefGoogle Scholar
  14. 14.
    F. Anson, Electrochem. Electroanal. ed. by W. Z. Huang (Peking University Publishers, Beijing, 1983), pp. 7–26Google Scholar
  15. 15.
    G.A.M. Mersal, M.M. Ibrahim, Int. J. Electrochem. Sci. 6, 761–777 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Limin Li
    • 1
  • Li Liu
    • 1
  • Wulan Zeng
    • 1
  • Huanmei Guo
    • 1
  • Yufeng Li
    • 1
  • Qijin Geng
    • 1
  1. 1.Microscale Science Institute, Department of Chemistry-Chemical & Environmental EngineeringWeifang UniversityWeifangChina

Personalised recommendations