Research on Chemical Intermediates

, Volume 39, Issue 8, pp 3595–3609 | Cite as

Application of artificial neural networks for formulation and modeling of dye adsorption onto multiwalled carbon nanotubes

  • Zohre ShahryariEmail author
  • Ali Mohebbi
  • Ataallah Soltani Goharrizi
  • Amir Ahmad Forghani


In this study, an artificial neural network (ANN) has been developed to predict the adsorption amount of dye (methylene blue) onto multiwalled carbon nanotubes. Batch experiments have been carried out to obtain experimental data. Important parameters in the adsorption system such as initial dye concentration, adsorbent dosage, temperature, pH and contact time have been used as the inputs of the network, while the output is the final concentration of dye in aqueous solution after adsorption. The neural network structure has been optimized by testing various training algorithms and different number of neurons in a hidden layer. An empirical equation for determination of final dye concentration in aqueous solutions after adsorption has been developed by using the weights of the optimized network. The results of the optimized ANN have been compared with conventional models in equilibrium and kinetic fields. According to error analysis and determination coefficient, the ANN was found to be the most appropriate model to describe this adsorption process. Sensitivity analysis showed that initial dye concentration, pH and contact time are the most effective parameters in this process. The influence percentages of these parameters on the output were 28, 24 and 24 %, respectively.


Adsorption Dye MWCNTs Aqueous solutions Artificial neural network 


  1. 1.
    M. Dogan, H. Abak, M. Alkan, J. Hazard. Mater. 164, 172–181 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Chowdhury, S. Chakraborty, P. Saha, Colloids Surf. B 84, 520–527 (2011)CrossRefGoogle Scholar
  3. 3.
    N.F. Cardoso, E.C. Lima, I.S. Pinto, C.V. Amavisca, B. Royer, R.B. Pinto, W.S. Alencar, S.F.P. Pereira, J. Environ. Manage. 92, 1237–1247 (2011)CrossRefGoogle Scholar
  4. 4.
    N.M. Mahmoodi, B. Hayati, M. Arami, C. Lan, Desalination 268, 117–125 (2011)CrossRefGoogle Scholar
  5. 5.
    K.V. Kumar, A. Kumaran, Biochem. Eng. J. 27, 83–93 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, J. Hazard. Mater. 177, 70–80 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Desalination 265, 159–168 (2011)CrossRefGoogle Scholar
  8. 8.
    C.H. Wu, J. Hazard. Mater. 144, 93–100 (2007)CrossRefGoogle Scholar
  9. 9.
    H.B. Demuth, M.H. Beale, M. Hagan, Neural network toolbox for use with MATLAB: user’s guide (MathWorks, Inc., Natick, 2009)Google Scholar
  10. 10.
    A. Celekli, S.S. Birecikligil, F. Geyik, H. Bozkurt, Bioresour. Technol. 103, 64–70 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Balci, O. Keskinkan, M. Avci, Expert Syst. Appl. 38, 949–956 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Cavas, Z. Karabay, H. Alyuruk, H. Dogan, G. Kalayci-Demir, Chem. Eng. J. 171, 557–562 (2011)CrossRefGoogle Scholar
  13. 13.
    A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei, M. Pourhassan, Bioresour. Technol. 101, 2252–2258 (2010)CrossRefGoogle Scholar
  14. 14.
    G. Annadurai, J.F. Lee, Biodegradation 18, 383–392 (2007)CrossRefGoogle Scholar
  15. 15.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361–1403 (1918)CrossRefGoogle Scholar
  16. 16.
    A. Celekli, M. Yavuzatmaca, H. Bozkurt, J. Hazard. Mater. 173, 123–129 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Yuh-Shan, Scientometrics 59, 171–177 (2004)CrossRefGoogle Scholar
  18. 18.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451–465 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Yetilmezsoy, S. Demirel, J. Hazard. Mater. 153, 1288–1300 (2008)CrossRefGoogle Scholar
  20. 20.
    A.B. Bulsari, Neural networks for chemical engineers (Elsevier Science Inc., New York, 1995)Google Scholar
  21. 21.
    Y. Yang, G. Wang, B. Wang, Z. Li, X. Jia, Q. Zhou, Y. Zhao, Bioresour. Technol. 102, 828–834 (2011)CrossRefGoogle Scholar
  22. 22.
    V.K. Gupta, R. Jain, M. Shrivastava, J. Colloid Interface Sci. 347, 309–314 (2010)CrossRefGoogle Scholar
  23. 23.
    N.M. Mahmoodi, M. Arami, H. Bahrami, S. Khorramfar, Desalination 264, 134–142 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Chowdhury, P. Saha, Chem. Eng. J. 164, 168–177 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Aleboyeh, M.B. Kasiri, M.E. Olya, H. Aleboyeh, Dyes Pigm. 77, 288–294 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Zohre Shahryari
    • 1
    Email author
  • Ali Mohebbi
    • 2
  • Ataallah Soltani Goharrizi
    • 2
  • Amir Ahmad Forghani
    • 3
  1. 1.Department of Chemical Engineering, Shiraz BranchIslamic Azad UniversityShirazIran
  2. 2.Department of Chemical Engineering, Faculty of EngineeringShahid Bahonar University of KermanKermanIran
  3. 3.Department of Chemical Engineering, Faculty of Engineering University of AdelaideAdelaideAustralia

Personalised recommendations